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Abstract

Constructing the molecular surface iIs the first crucial stage to produce accurate calculations of electrostatic potentials and energies for the
molecules immersed In the water phase. When the macromolecules and complexes consist of hundreds of thousands of charged atoms, three-
dimensional surface construction becomes unbearably slow due to the high computational cost. In this project, we propose a novel grid-based
computing scheme to generate the Minimized Molecular Surface (MMS) by effectively utilizing the computational power of multiple CPUs on a
computing cluster via the Message Passing Interface (MPI) library. The resulting parallel code will be tested against its sequential version to
demonstrate Iits efficiency and accuracy, and the code will be released to the computational biophysics society free-of-charge for academic usage.

Biological Simulations

The chart to the left details CPU-time (s) consumed creating the MMS of a molecule listed below along with the number of atoms, and the area (A?)
and volume(A3) of the resulting molecular surface. The two surfaces pictured are a comparison between an MMS generated surface using the ADI
algorithm and the Solvent Exclusive Surface (SES) (the solvent excluded domain of the VdW surface) generated by the MSMS package for two
molecules. (B-DNA double helix segment PDB ID: 425D and another molecule, hemoglobin, PDB ID: 1HGA). This was done with mesh spacing
h=05A,At =0.1until T = 10. The MMS was extracted at S=.98 and the SES generated by the MSMS package used probe 1.5A. While the
times to generate the surfaces of the given molecules was almost insignificant, one must consider the time it would take to generate the surface of
molecular complexes of millions of atoms. The computational time seems to be linearly related to the number of atoms so one could expect a
computational time of around 15 minutes for a molecule with 1.2 * 10° atoms which is far from a maximum. This gives rise to the desire to
parallelize the code that generates the molecular surfaces potentially decreasing the computational time by orders of 10.

Minimized Molecular Surfaces and Electrostatic Potential

The Minimized Molecular Surface (MMS) [2] Is constructed by minimizing a total free energy functional
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Where v is the surface tension, p is the hydrodynamic pressure, p, is the solvent bulk density, U () is the VdW potential, p,,(r) is the
canonical density of molecular free charges, ¢(r) iIs the electrostatic potential, €, Is the electric permittivity of the macromolecule, € Is the
electric permittivity of the solvent, Kp Is the Boltzmann constant, T is the temperature, ¢; Is the bulk concentration of jth ionic species, q; Is the
charge of the jth 1onic species, and N, Is the number of 1onic species. Solution to eqn. (3) Is equivalent to the solution to the partial differential
equation
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« Spatial Domain Decomposition

The most straightforward parallel computing technique consider decompose a finite spatial domain of R3 equally among the available CPU’s so that
each CPU can work on it’s own part of the domain. Each piece of the subdomain with which a CPU is working will have some overlap with another
CPU in each direction and this overlap needs to be synchronized. [1]

Numerical Methods/Derivations

 Temporal Discretization.

An Alternating Direction Implicit (ADI) method is utilized to discretize the temporal domain » Temporal Domain Decomposition
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* Time-and-space Domain Decomposition
The Extended Parareal Algorithm Is an adaptation of the original Parareal Algorithm that has removed its redundant computations. In the
Extended Parareal algorithm, spatially-parallelized solvers are well incorporated into the framework of the Parareal algorithm in order to achieve
both time and space parallel calculations. [3]
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where 6., 6., and 6,, are the second order finite difference operators in x-, y-, and z-direction, respectively.
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« Spatial Discretization
Above spatial operators are approximated by
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use stored values computed In (1) and (2)
and
Running coarse propagator  Running fine propagator Running coarse propagator currently computed values at the end of T_{n-1} In (3) to produce IV:

n >= 1: use stored values computed In (1) and (2) nd of
Y_{n#1)*{k+1} = GY_n* {k=1}) + F{Y_n"K) - G(Y_n"k)

30 @) 3) 5 : : : : :
Running coarse propagator  Running fine propagator ~ Running coarse propagator | currently computed values at the end of T_{n-1} in (3) to produce IV: in sequential in parallel in sequential
in sequential

in sequential in parallel Y_{n+1)}"{k+1} = G(Y_n"{k+1}) + F(Y_n"K) - G(Y_n"k)

Store all GY_{n+1}"(k+1))
and

Tk

Store all G(Y_{n+1}"(k+1))
and

corrected values \lambda n” {k+1}, n>k.
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n=0: use the exact Vatt= 0 k =k+1

k=k+1

n>=1: use computed values attheend of T_{n-1} aslV; n>=1: use computed values at the end of T_{n-1} as IV;

Store all values at the end of all T_n, n>=0.

Store all values at the end of all T_n, n>=0.

n= 0 use the exact IV at t=0;

n >= ki use stored values ( or corrected \lambda values) at the end

n >= 1: use stored values ( or corrected \lambda values) at the end of T_{n-1} in (1) (of In (3)) as IV;

of T_{n-1} In (1) (or In (3)) as IV;

Store all values at the end of all T_n, n>=0. Store all values at the end of all T_n, n>=k.
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Where, for example, B. 1., = [ . It can be effectively calculated by
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