
Abstract
Constructing the molecular surface is the first crucial stage to produce accurate calculations of electrostatic potentials and energies for the
molecules immersed in the water phase. When the macromolecules and complexes consist of hundreds of thousands of charged atoms, three-
dimensional surface construction becomes unbearably slow due to the high computational cost. In this project, we propose a novel grid-based
computing scheme to generate the Minimized Molecular Surface (MMS) by effectively utilizing the computational power of multiple CPUs on a
computing cluster via the Message Passing Interface (MPI) library. The resulting parallel code will be tested against its sequential version to
demonstrate its efficiency and accuracy, and the code will be released to the computational biophysics society free-of-charge for academic usage.
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Minimized Molecular Surfaces and Electrostatic Potential

The Minimized Molecular Surface (MMS) [2] is constructed by minimizing a total free energy functional
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and a generalized Laplace–Beltrami equation for the hypersurface function 𝑆(𝑟)
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Where γ is the surface tension, p is the hydrodynamic pressure, ρ0 is the solvent bulk density, 𝑈𝑉𝑑𝑊(𝒓) is the VdW potential, ρ𝑚(r) is the

canonical density of molecular free charges, 𝜙(r) is the electrostatic potential, 𝜖𝑚 is the electric permittivity of the macromolecule, 𝜖𝑠 is the

electric permittivity of the solvent, 𝐾𝐵 is the Boltzmann constant, T is the temperature, 𝑐𝑗 is the bulk concentration of jth ionic species, 𝑞𝑗 is the

charge of the jth ionic species, and 𝑁𝑐 is the number of ionic species. Solution to eqn. (3) is equivalent to the solution to the partial differential
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Numerical Methods/Derivations

• Temporal Discretization.

An Alternating Direction Implicit (ADI) method is utilized to discretize the temporal domain 
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where 𝛿𝑥𝑥, 𝛿𝑦𝑦, and 𝛿𝑧𝑧 are the second order finite difference operators in x-, y-, and z-direction, respectively.

• Spatial Discretization

Above spatial operators are approximated by
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Biological Simulations
The chart to the left details CPU-time (s) consumed creating the MMS of a molecule listed below along with the number of atoms, and the area (Å2)

and volume(Å3) of the resulting molecular surface. The two surfaces pictured are a comparison between an MMS generated surface using the ADI
algorithm and the Solvent Exclusive Surface (SES) (the solvent excluded domain of the VdW surface) generated by the MSMS package for two
molecules. (B-DNA double helix segment PDB ID: 425D and another molecule, hemoglobin, PDB ID: 1HGA). This was done with mesh spacing

h = 0.5Å ,∆𝑡 = 0.1 𝑢𝑛𝑡𝑖𝑙 𝑇 = 10. The MMS was extracted at S=.98 and the SES generated by the MSMS package used probe 1.5Å. While the
times to generate the surfaces of the given molecules was almost insignificant, one must consider the time it would take to generate the surface of
molecular complexes of millions of atoms. The computational time seems to be linearly related to the number of atoms so one could expect a
computational time of around 15 minutes for a molecule with 1.2 ∗ 106 atoms which is far from a maximum. This gives rise to the desire to
parallelize the code that generates the molecular surfaces potentially decreasing the computational time by orders of 10.

Parallel Computing Techniques
• Spatial Domain Decomposition

The most straightforward parallel computing technique consider decompose a finite spatial domain of ℝ3 equally among the available CPU’s so that
each CPU can work on it’s own part of the domain. Each piece of the subdomain with which a CPU is working will have some overlap with another
CPU in each direction and this overlap needs to be synchronized. [1]

• Temporal Domain Decomposition
The Parareal algorithm is an effective parallel computing scheme which allows the temporal domain to be divided into time slices and the
calculations on each slice can be carried out on various CPUs at the same time. Two solvers, one coarse (G) and one fine (F), are required in the
scheme and work together in the prediction-and-correction style formula
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• Time-and-space Domain Decomposition

The Extended Parareal Algorithm is an adaptation of the original Parareal Algorithm that has removed its redundant computations. In the
Extended Parareal algorithm, spatially-parallelized solvers are well incorporated into the framework of the Parareal algorithm in order to achieve
both time and space parallel calculations. [3]
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