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Why Solve PDEs With AI?

• Traditional numerical methods are often great, but can be prone to instability

• Some problems extremely difficult to solve:

o Inverse problems

o Problems with incomplete initial conditions (e.g. weather modeling)

• Physics-informed Neural Networks (PINNs) are a promising new way to tackle 
these issues

• Main benefit is robustness obtained from continuous model



Burgers' Equation Background

Johannes Martines Burgers
(source: University of 

Maryland)

• Model of turbulence in compressible fluids 
(such as gases)

• Equation first appears in Bateman (1915)

• Named after J.M. Burgers for his treatise on 
the subject in 1948

• Jump discontinuity in the solution adds 
difficulty in developing numerical methods



Burgers' Equation Initial Boundary Value Problem

Governing Equation

Initial Condition Boundary Condition



"Artificial 
Intelligence"



Inside a Neural Network (simplified)



Swish Activation 
Function



How to Train Your Neural Network

• How do we get neural network to output the solution to the IBVP?

• Find the weights that minimize the loss function:

• Minimization is done via steepest descent with respect to the network 
weights



Physics Informed Neural Net Training Process

Does the network's solution evolve correctly 
at these points?

Does the network have the correct output at 
these points?



Vary Weights to 
Minimize the Loss 

Function



PINNs Experiment Results



Traditional Finite 
Difference Method

• Solution to IVBP is approximated 
at grid points

• First order in time, second order in 
space

• Point-to-point update method



Finite 
Difference

Viscosity = 0.0031 Viscosity = 0.0062

PINNs



PINNs with Incomplete Initial Condition



The Tradeoff

• What we gain in robustness, we lose a lot in speed

V = 0.0031 Error at Final Time Runtime (seconds)

PINNs 0.0618 490.732

Finite Difference 0.0589 0.002



Conclusion

• PINNs offer a lot in terms of robustness and ease-of-use

• But they won't replace traditional methods entirely

• One more tool in the toolbox to solve difficult problems
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