2024-2025

Department of Mathematics
West Chester University
Undergraduate Handbook

If you have any questions about any item in the Handbook, or if you wish to learn more about the Department of Mathematics at West Chester University, please do not hesitate to contact me:

Dr. Allison Kolpas
Professor and Chair
Department of Mathematics
25 University Avenue - Room 101
West Chester University

E-mail: akolpas@wcupa.edu
Phone: 610-436-2440
Fax: 610-738-0578
(C) 2024

Department of Mathematics
West Chester University
West Chester, Pennsylvania 19383

[^0]
TABLE OF CONTENTS

Page
Introduction 1
Mathematics at West Chester University 1
Careers in Mathematics and Statistics 3
Planning Your Program of Study 5
Transfer Student Advising 5
Baccalaureate Programs 6
BA Mathematics 8
Accelerated BA to MA Mathematics 10
BS Mathematics 13
Actuarial Science 14
Applied and Computational Mathematics 16
Accelerated BS to MS Applied and Computational 18
Mathematical Finance 22
Mathematics 24
Accelerated BS to MA Mathematics 26
Statistics 30
Accelerated BS to MS Applied Statistics 32
Minor Programs 33
Calendar of Planned Course Offerings 36
Placement of Electives in Groups 39
Special Opportunities for Undergraduates 40
Accelerated, 3 + 2 Graduate Programs 40
Actuarial Science Recognition 40
Cayman Islands Summer Program 41
Research Experience for Undergraduates 41
Recommended Preparation for Graduate Study 42
General Department Information 43
The Department's Scholarships/Awards Program 45
Catalog Descriptions of Mathematics Courses 49
Faculty and Staff 59

Introduction

Mathematics is one of the oldest of all disciplines and it is fundamental for serious scholarship in all of the sciences. Mathematicians use the basic tools of mathematics, including: theory, computational techniques, algorithms, and advanced technology to solve a wide variety of real world problems. Mathematics is basic to the understanding of many disciplines, including: physics, chemistry, computer science, economics, and astronomy.

Mathematics plays an important role in understanding recent important developments in the biological sciences and many other fields. Mathematical models are frequently used in the social sciences, especially in economics and psychology, and are found throughout actuarial science and statistics. Mathematicians are broadly classified as either pure or applied. The distinction between the two is often somewhat fuzzy as the work of both often overlaps.

Pure mathematicians advance mathematical knowledge by proving new results. They generally seek to increase mathematical knowledge without necessarily having an eye on its practical use. Such abstract theoretical knowledge has often proved to be of practical value to science and other disciplines as evidenced by the applications of group theory to quantum mechanics and Riemannian geometry to Einstein's work in understanding the nature of the universe.

Applied mathematicians can also be focused on theoretical development, but in contrast with pure mathematicians, they develop and apply mathematical tools to define and solve practical problems arising in business; government; engineering; the physical, biological and social sciences; and elsewhere. For example, they may study the most efficient way to schedule postal deliveries between cities; the effectiveness and risks of new drugs; the aerodynamics of a proposed airplane design; or the secret coding used to transmit military, political, or financial information. Applied mathematicians also study, develop, and analyze the mathematical theory behind the efficient design and implementation of practical computational algorithms for solving various types of modeling equations.

Information about careers in mathematics and programs to prepare for students for these careers are described later in the Handbook.

Mathematics at West Chester University

Our programs provide close interaction between students and faculty, access to an excellent library, and extensive computer support services. These are all instrumental in providing our students with a solid, undergraduate background in mathematics.

Mission

The Department's mission statement includes the following goals:

- To give students a firm grounding in the ideas and methods of mathematics.
- To develop an understanding and appreciation of the abstract and deductive nature of mathematics.
- To give students an appreciation of the contemporary as well as the historical importance of mathematics.
- To provide students with sufficient skills to enable them to apply their knowledge to related fields of study.
- To prepare students for continued study in graduate school; for a career as a middle or secondary school mathematics teacher; or for a career as an actuary, an applied mathematician, a statistician, or an industrial mathematician.

Faculty

Our faculty hold advanced degrees from major universities. Many have gained both national and international recognition in research and teaching. A list of Department faculty members that includes their contact information is given later in the Handbook. Additional information may be found on the Department's website http://www.wcupa.edu/sciences-mathematics/mathematics/.

Quality Teaching

Students pursuing a major or minor in mathematics receive individual attention from our faculty members. The upper division classes for majors are small, ranging in size from five to about 25 . We like to think of ourselves as being a friendly, warm, and student-centered department. Students are encouraged to visit their professors during office hours for extra help, if needed.

Mathematics Learning Center (MLC)

The department maintains a Mathematics Learning Center (Room 124) staffed by advanced students. Those that qualify to staff the MLC acquire pre-professional teaching experience, help their peers, and develop communication skills.

Student Lounge

Students enjoy access to a lounge (Room 105). Students use the lounge to rest in between classes, work on homework, socialize, have a snack, or play games.

Technical and Related Support

Students have access to several computer labs with full internet access and mathematical, statistical, and programming software, including: Mathematica, MATLAB, MiniTab, and SAS. These computer labs are located in rooms 103 and 109 next to the Student Lounge. Desktop computers also are available in the Student Lounge (Room 105). The Department has a Seminar Room (Room 104) that includes a small mathematics library.

Careers in Mathematics and Statistics

A graduate who holds a bachelor's degree in mathematics can pursue entry-level positions leading to highly paid positions in both the private and public sectors. Some of these are described below.

Actuary

Actuaries determine future risk, make price decisions, and develop investment strategies. Many also design insurance, financial, and pension plans and help ensure their viability. Most actuaries specialize in life and health or property and causality insurance, others work in finance or employee benefit programs.

In general, actuaries assemble and analyze data to estimate probabilities of an event taking place, such as death, sickness, injury, disability, or property loss. Most are employed in the insurance industry, where they estimate the amount a company will pay in claims. They assure that the price charged for insurance coverage will enable their company to be profitable.

Applicants for beginning actuarial jobs usually have a bachelor's degree in mathematics, actuarial science, statistics, or a business-related discipline such as economics, finance or accounting. Most companies prefer that applicants have passed a few of the actuarial examinations required for professional designation. See BeAnActuary.org for more information.

Commercial Banker

Commercial banks hire more people than any other industry in the financial sector. A graduate may begin in an entry-level position at a branch office, but with the quantitative skills that a degree in mathematical finance offers, a graduate can easily advance into management and specialist positions that use her or his skills to manage the bank's investments. Moreover, this degree prepares graduates for careers in economic forecasting and analysis.

Cryptanalyst

Cryptanalysts develop techniques for the secure transmission of information and they develop techniques for reading information secured by others.

Financial Planner

Financial planners build investment plans for their clients. They gather information from individuals and families regarding their retirement plans and investment goals and decide the best way to reach these goals given their assets. There are a series of exams to take to become a Certified Financial Planner. With many Americans reaching retirement age, there is a growing demand for those with this certification. For more information, see http://www.cfp.net/.

Operations Research Analyst

Operations research and management science are often used to describe the discipline of applying quantitative techniques to make decisions or solve problems. Many of the tools of an operations researcher were developed during World War II in addressing problems related to the deployment of radar, submarine searches, deployment of supplies and weapons, and the breaking of enemy codes. Following the war, numerous peacetime applications emerged placing these specialists in demand.

The emergence of operations research in today's economy reflects the growing complexity of managing large organizations that require efficient use of human, material, and financial resources. In general operations research analysts address questions related to strategy, forecasting, resource allocation, facilities layout, inventory control, personnel allocation, and delivery or distribution systems.

Statistician

Statisticians apply their mathematical knowledge to the design of surveys and experiments. They collect, process, and analyze the data, and interpret the results. Statisticians apply their knowledge to a variety of fields including biology, economics, engineering, medicine, public health, psychology, marketing, and education.

Statisticians often have different professional designations depending on their area of specialization. For example, a statistician working primarily with economic data may be known as an econometrician, while those in public health or medicine may hold titles of biostatistician, biometrician, or epidemiologist.

Links to Information about Careers in Mathematics

WeUseMath.org
BeAnActuary.org
www.siam.org/careers
www.whydomath.org

Planning Your Program of Study

Starting At West Chester

If you are a first year student, the Department Chair will construct your Fall schedule and assign a Department faculty member as your advisor. If you are a transfer student, you will meet with the Chair, Assistant Chair, or your advisor to plan your first semester schedule.

Scheduling

Students should familiarize themselves with RamPortal, which allows you to register for classes and monitor progress towards your degree. RamPortal has a feature called "Degree Audit." This allows students to see exactly what requirements have and have not been met. If you are considering changing majors, RamPortal also has a feature called "What-If Degree Audit," which allows you to see what requirements have and have not been met for the program you are considering.

Students are strongly encouraged to prepare, print, and review their Degree Audit before meeting with their advisor to schedule courses. Doing so will make your advising meetings more efficient and rewarding, because you will know in advance which requirements remain unmet. This allows more time for explaining required and elective mathematics courses; exploring potential minors; discussing your post-graduation plans; and, most importantly, having your advisor serve as a career mentor to whom you can turn for help and advice.

The scheduling of classes for a given semester typically takes place during the middle of the preceding semester. Students schedule classes online. The Handbook contains sample four-year plans for each program.

General Education Requirements

As part of their baccalaureate degrees, all West Chester University students must meet the University's General Education requirements, which include the First Year Experience (FYE) and course work in: academic foundations (English composition and mathematics); the natural sciences, behavioral and social sciences; the arts; the humanities; diverse communities (denoted "J"), and interdisciplinary courses (denoted "I"). Additionally, students must complete nine credits in "Writing Emphasis" (denoted "W"), 9 credits in Speaking Emphasis (denoted "S"), and 3 credits in Ethics (denoted "E").

Planning Toward Graduation

In spring of your sophomore year, when you are scheduling your junior year, you should take the time to plan your last four semesters at West Chester. Some upper division courses are offered only during Spring or Fall, and others are offered only one semester every other year. Thus, if you miss out on a course, it may not be offered for another two years. Your advisor can be a valuable resource, but be advised that you are responsible to see that all graduation requirements are met.

Transfer Student Advising

General Education Requirements

Transfer students have modified requirements depending on the number of units transferred. Please see the 2024-2025Undergraduate Catalog for details of specific requirements and the Academic Passport program.

Transfer Credit Reports and TRN199 Courses

Once you receive your transfer credit report. Be careful to clearly look over and courses that transfer with a course number of "199". This course number is reserved for courses the registrar cannot identify with a WCU offering. So for example if something transfers as MAT 199, the registrar knows it is a Mathematics course but nothing else. If you get TRN 199, they just identify it as a generic college course. Check to see if any of these courses identify with WCU offerings. If they do, talk to your advisor about how to fill out an appeal form (https://www.wcupa.edu/registrar/documents/transferCreditAppealEN.pdf) to get specific credits (if applicable). Details on transfer credits can be found here https://catalog.wcupa.edu/undergraduate/academic-policies-procedures/transfer-ap-other-credits/.

Baccalaureate Programs

The Department of Mathematics offers two undergraduate degrees:

- BA Mathematics. This is the traditional liberal arts degree that prepares students for graduate work in mathematics, applied mathematics, or statistics. The program has a foreign language requirement (French, German, or Russian are recommended), so it is ideal for students who want to pursue graduate work at graduate schools that require mastery of a foreign language.
- BS Mathematics. This is a professional program, which has no foreign language requirement, offers concentrations in actuarial science, applied and computational mathematics, mathematical finance, mathematics, and statistics. The mathematics option prepares students for graduate work in pure mathematics and the other four concentrations prepare students for professional careers in applied mathematics.

Both degrees require the same five, lower division courses:
MAT 161 Calculus I (4 credits)
MAT 162 Calculus II (4 credits)
MAT 261 Calculus III (4 credits)
MAT 200 The Nature of Mathematics (3 credits)
MAT 311 Linear Algebra (3 credits)
The Calculus sequence (MAT 161, MAT 162, and MAT 261) provides the foundation for nearly every upper division mathematics course. The Nature of Mathematics (MAT 200) includes mathematical notation and argument, structure of proofs, basic facts about logic, mathematical proofs, problem-solving techniques, and introductions to mathematical software packages. MAT 200 is designed to help students successfully transition from the Calculus sequence to upper division mathematics. Linear Algebra (MAT 311) includes matrices, systems of linear equations, vector spaces, linear transformation, determinants, eigenvalues, spectral theorem, and triangulation. Together, these five courses provide a solid foundation for success in upper division mathematics courses.

BA Mathematics

In the first two years, mathematics majors are given a solid foundation through courses that capture their interest and encourage them to continue in the mathematics program. As upper division students, mathematics majors are given a well-rounded introduction to higher mathematics. The curriculum requires two courses at an advanced level in each of the fundamental areas of algebra, analysis, and applied mathematics. Students in the BA program are also required to complete a minor in a related field (or an additional nine credits of upper division mathematics) in order to enhance their appreciation and preparation for applications of mathematics. By careful selection of courses in the major
and in the minor, students in the BA program will be prepared for critical analysis and problem-solving positions in many areas of industry or government.

Lower Division, Required Core Courses

MAT 161 Calculus I (4 credits)
MAT 162 Calculus II (4 credits)
MAT 200 The Nature of Mathematics (3 credits)
MAT 261 Calculus III (4 credits)
MAT 311 Linear Algebra (3 credits)

Upper Division Required Courses

MAT 411 Algebra I (3 credits)
MAT 421 Mathematical Statistics I (3 credits)
MAT 441 Real Analysis I (3 credits)
MAT 480 Capstone in Mathematics (3 credits)

Upper Division Elective Courses ${ }^{\mathbf{1}}$

Upper division electives in mathematics are to be taken as follows:
One course in algebra,
One course in analysis,
One course in applied mathematics, and
An additional 6 credits in upper division mathematics courses.

Cognate Requirements

PHY 170 Physics I (4 credits)
CSC 141 Computer Science I (3 credits)

Foreign Language Requirement

The requirements for the BA degree include a foreign language. The equivalent of completing the second half of the intermediate year of an approved foreign language: Russian, French, or German (without the culture cluster option) is strongly recommended.

Requirement of a Minor

Students completing the BA degree are required to complete either a minor or, with the prior approval of the student's advisor, an additional nine (9) credit hours of upper division mathematics. The discipline chosen for the minor should reflect the career goals of the student.

[^1]Fall 2024/Spring 2025 - B.A. Mathematics-120 credits

GENERAL EDUCATION REQUIREMENTS (45 CREDITS)		
	Credits	SEMESTER
First Year Experience (FYE)	4	
WRT 120/ WRT 123§	3	
WRT 200-Level Course	3	
MATHEMATICS (MAT 161 BELOW)	3	
DIVERSE COMMUNITIES "J" COURSE	3	
INTERDISCIPLINARY "I" COURSE	3	
SCIENCE (CSC 141 BELOW)	3	
SCIENCE (PHY 170 BELOW)	3	
BEHAVIOR \& SOCIAL SCIENCES	3	
BEHAVIOR \& SOCIAL SCIENCES	3	
HUMANITIES	3	
HUMANITIES	3	
ARTS	3	
ETHICS	3	
ADDITIONAL GENERAL EDUCATION REQUIREMENTS (3 Credits)		
WRITING EMPHASIS COURSES: TWO "W" COURSES IN ADDITION TO MAT 480		
SPEAKING EMPHASIS COURSES: TWO "S" COURSES IN ADDITION TO MAT 480		
CAPSTONE REQUIREMENT: MAT480-S, W		
Foreign Language Requirement (0-12 credits)\#		
LANGUAGE 101	3	
LANGUAGE 102	3	
LANGUAGE 201	3	
LANGUAGE 202	3	
COGNATE REQUIREMENTS (7 LESS 7 ATTRIBUTED TO GEN ED = 0 CREDITS)		
CSC 141 Computer Science I	3	
PHY 170 Physics I	4	

MATHEMATICS CORE REQUIREMENTS (18 less 4 attributed to Gen Ed = 14 CREDITS)		
	Credits	Semester
MAT 161 CALCULUS I	4	
MAT 162 CALCULUS II	4	
MAT 200 NATURE OF MATHEMATICS	3	
MAT 261 CALCULUS III	4	
MAT 311 LINEAR ALGEBRA	3	
BA MATHEMATICS REQUIREMENTS (24 CREDITS)		
MAT 411 ABSTRACT ALGEBRA	3	
MAT 421 MATHEMATICAL STATISTICS I	3	
MAT 441 REAL ANALYSIS I	3	
ALGEBRA ELECTIVE (MAT 321, 412, 414, or 415)	3	
ANALYSIS ELECTIVE (MAT 343, 432, 442, 443, 444, or 445)	3	
APPLIED MATHEMATICS ELECTIVE (MAT 325, 343, 371, 413, 415, $422,423,425,427,433,478$, or 479; or STA 319	3	
MATHEMATICS ELECTIVE (300 LEVEL AND HIGHER)*	3	
MATHEMATICS ELECTIVE (300 LEVEL AND HIGHER)*	3	
MINOR REQUIREMENTS AND FREE ELECTIVES (22-34 CREDITS)**\#		
MINOR ELECTIVE	3	
FREE ELECTIVE (MAT401, S, W recommended)	3	
FREE ELECTIVE (MAT 499 recommended)	3	

General Education Notes

§ WRT 123 IS A 4-CREDIT COURSE, SO THE FOURTH CREDIT COUNTS AS A FREE ELECTIVE.
\# STUDENTS TESTING OUT OF LANGUAGE COURSES WILL NEED ADDITIONAL FREE ELECTIVES

- TRANSFER STUDENTS SHOULD REFER TO THE CATALOG FOR GENERAL

EDUCATION REQUIREMENTS.

- STUDENTS ARE ENCOURAGED TO TAKE COURSES THAT MEET MULTIPLE REQUIREMENTS, FOR EXAMPLE, COURSES THAT ARE BOTH "W" AND "J" COURSES.

Program Specific Notes:

* ANY COURSES IN MATHEMATICS WITH COURSE NUMBERS ABOVE 311, WITH THE EXCEPTION OF THOSE COURSES WITH A PRIMARY FOCUS ON TEACHER EDUCATION OR THOSE COURSES RESTRICTED TO STUDENTS MAJORING IN ELEMENTARY Education.
** INLIEU OF A MINOR < STUDENTS MAY TAKE AN ADDITIONAL 9 CREDITS OF UPPER DIVISION MATHEMATICS ELECTIVES AND REPLACE THE OTHER 9 CREDITS OF THE MINOR WITH FREE ELECTIVES.

B.A. Mathematics
 Sample Course Plan Students Admitted Fall 2024/Spring 2025

Year	Fall	Spring
1	FYE MAT 161 CSC 141 WRT 120/ WRT 123 Language 101	MAT 162 MAT 200 PHY 170 Gen Ed Behavioral/Social Science Language 102
2	MAT 261 MAT 311 WRT 200-level Language 201 JW Course	Applied Mathematics Elective Minor Elective Free Elective(MAT 401, S, W rec.) Language 202 Gen Ed Arts
3	MAT 411 MAT 421 IS Course Minor Elective Gen Ed Humanities	MAT 441 Algebra Elective Gen Ed Humanities Minor Elective MAT 480 Capstone (S, W)
4	Analysis Elective Minor Elective Ethics (E) Free Elective (MAT 499 rec.) Mathematics Elective*	Mathematics Elective* Minor Elective Minor Elective Gen Ed Behavioral/Social Science

General Education Notes:

- Transfer Students Should Refer to the Catalog for General Education Requirements.
- Students are encouraged to take courses that meet multiple requirements, for example, courses that are both "W" and "J" courses.
- Writing Emphasis Courses: Three "W" courses.
- Speaking Emphasis Courses: Three "S" courses.
- Ethics Requirement: One "E" course.

Program Specific Notes:

* Any courses in mathematics with course numbers above 311, with the exception of those courses with a primary focus on teacher education or those courses restricted to students majoring in elementary Education
(ACCELERATED) B.A. MATHEMATICS TO M.A. MATHEMATICS - $\mathbf{1 3 8}$ CREDITS

General Education Requirements (45 cREDITS)		
	Credits	SEMESTER
First Year Experience (FYE)	3	
WRT 120/ WRT 123§	3	
WRT 200-Level Course	3	
Mathematics (MAT 311 below)	3	
DIVERSE Communities "J" COURSE	3	
Interdisciplinary "I] COURSE	3	
Science (CSC 141 below)	3	
ScIENCE (3 CREDITS OF PHY 170 BELOW)	3	
Behavior \& Social Sciences	3	
Behavior \& Social Sciences	3	
Humanities	3	
Humanities	3	
ARTS ETHICS	3	
ETHICS	3	
Additional General Education Requirements (3 Credits)		
Writing Emphasis Courses: Two "W" COURSES in addition to mat 480		
SpEAKING EmPhasis Courses: Two "S" COURSES In Addition to mat 480		
Capstone Requirement: MAT480-S, W		
FOREIGN LANGUAGE REQUIREMENT (0-12 CREDITS)		
LANGUAGE 101	3	
LANGUAGE 102	3	
LANGUAGE 201	3	
LANGUAGE 202	3	
Cognate Requirements (7 Less 7 ATtributed to Gen Ed = 0 credits)		
CSC 141 Computer Science I	3	
PHY 170 Physics I	4	

Mathematics Core Requirements (18 less 4 Attributed to gen ed = 14 CRedits)

MAT 161 Calculus I	4	
MAT 162 Calculus II	4	
MAT 200 Nature of Mathematics	3	
MAT 261 Calculus III	4	
MAT 311 Linear Algebra	3	

BA Mathematics Requirements (24 credits)

MAT 411 Abstract Algebra	3	
MAT 421 Mathematical Statistics I	3	
MAT 441 Real Analysis I	3	
Algebra Elective (mat 321, 412, 414, 04 415)	3	
Analysis Elective (mat 343, 432, 442, 443, 444, or 445)	3	
Applied Mathematics Elective (mat 325, 343, 371, 413, 415, 422, 423, 425, 427, 433, 478, or 479; or STA 319)	3	
Mathematics Elective (300 level and higher)*	3	
Mathematics Elective (300 level and higher)*	3	

Minor Requirements and Free Electives (22-34 credits)** \#

Minor Elective	3	
Minor Elective	3	
Free Elective (mat401 S,W ReCommended)	3	
Free Elective (mat499 recommended)	3	

Program Specific Notes:

* Any courses in mathematics with course numbers above 311, with the EXCEPTION OF THOSE COURSES WITH A PRIMARY FOCUS ON TEACHER EDUCATION OR THOSE COURSES RESTRICTED TO STUDENTS MAJORING IN ELEMENTARY EDUCATION.
** In Lieu Of A Minor, Students May Take An Additional 9 Credits Of Upper Division Mathematics Electives and Replace The Other 9 Credits of the Minor With Free Electives.
(ACCELERATED) B.A. MATHEMATICS TO M.A. MATHEMATICS - 138 CREDITS (CONTINUED)

Graduate Courses (33 Less 15 Attributed to Undergraduate Record = 18 Credits)		
MAT 515 Algebra I	3	
MAT 516 Algebra II	3	
MAT 532 Geometry I or MAT535 Topology	3	
MAT 545 Real Analysis I*	3	
MAT 546 Real Analysis II*	3	
STA 505 Mathematical Statistics I*	3	
MAT 513 or MAT 575 (Recommended Elective)*	3	
Graduate Mathematics Elective*	3	
Graduate Mathematics Elective	3	
Graduate Mathematics Elective or Thesis	3	
Graduate Mathematics Elective or Thesis	3	

*Five graduate courses, taken before the conferral of the BA, may be dual-counted to satisfy both the MA requirements and the upper division elective requirement (algebra, analysis, applied, and two unrestricted electives) for the BA program. The specific graduate courses used in this way may depend on when students enter the program and what graduate courses are offered during their fourth year. For example, in the current course rotation, students reaching Year 4 in fall of an even year may use MAT 545 to replace the analysis elective, whereas students reaching Year

4 in an odd year may use MAT 515 to replace the algebra elective.

(Accelerated) B.A. Mathematics to M.A. Mathematics

First Year	
Fall (odd)	Spring (even)
MAT 161 (4) CSC 141 (3) Language 101 (3) FYE (3) WRT 120/WRT 123 (3)	MAT 162 (4) MAT 200 (3) PHY 170 (4) Gen Ed Behavioural/Social Science (3) Language 102 (3)
Second Year	
Fall (even)	Spring (odd)
MAT 261 (4) MAT 311 (3) Language 201 (3) WRT 200 (3) Minor Elective (3)	MAT 401 (3) recommended Gen Ed Arts (3) Language 202 (3) JW Course (3) Minor Elective (3)
Third Year	
Fall (odd)	Spring (even)
MAT 411 (3) MAT 421 (3) Minor Elective (3) IS Course (3) Gen Ed Humanities (3)	MAT 441 (3) MAT 513* (Elective) (3) MAT480 Capstone S.W (3) Gen Ed Humanities (3) Minor Elective (3)
Fourth Year	
Fall (even)	Spring (odd)
$\begin{aligned} & \hline \text { MAT } 545 \text { (3)* } \\ & \text { STA } 505 \text { (3) } \\ & \text { Minor Elective (3) } \\ & \text { Ethics (3) } \\ & \text { MAT } 499 \text { rec. (1) } \end{aligned}$	```MAT 546 (3)* Grad Math Elective (3) Minor Elective (3) Gen Ed Behavioral/Social Science (3)```
Fifth Year	
Fall (odd)	Spring (even)
MAT 515 (3)* MAT 532 (3) Grad Math Elective or Thesis (3)	MAT 516 (3)* Grad Math Elective (3) Grad Math Elective or Thesis (3)

*Students reaching Year 4 in fall of an odd year may use MAT 515 to replace the algebra elective and take an analysis elective in year 3. MAT 515-516 may be taken prior to MAT 545-546.

BS in Mathematics

The BS degree prepares students for careers in applied mathematics (actuarial science, applied and computational mathematics, financial mathematics, or statistics) or pure mathematics. The main difference between the BA Mathematics Program and the BS Mathematics Program is that the BA has a foreign language requirement, while the BS does not.

Required Core Courses

MAT 161 Calculus I (4 credits)
MAT 162 Calculus II (4 credits)
MAT 200 The Nature of Mathematics (3)
MAT 261 Calculus III (4 credits)
MAT 311 Linear Algebra (3)
Required Program Courses by Program

[^2] MAT 353 MAT 354, MAT 360, or MAT 364

Fall 2024/Spring 2025 - B.S. Mathematics: Actuarial Science-120 credits

General Education Requirements (43 CREDITS)		
	Credits	Semester
First Year Experience (FYE)	4	
WRT 120/ WRT 123§	3	
WRT 200-Level Course	3	
Mathematics (MAT 311 below)	3	
Diverse Communities "J" course	3	
InTERDISCIPLINARY "I" COURSE	3	
Science	3	
Science	3	
Behavior \& Social Sciences (ECO 111 below)	3	
Behavior \& Social Sciences	3	
Humanities	3	
Humanities	3	
Arts	3	
Ethics Requirement: One "E" Course	3	
Additional General Education Requirements		
Writing Emphasis Courses: Two "W" courses in addition to ENG 368, ENG 371, or ENG 375		
Speaking Emphasis Courses: Three "S" courses		
Capstone Course: MAT478 Fundamentals of Actuarial science	3	
Internship or Free Electives (14 credits§)		
MAT 491 Internship in Applied Mathematics** (optional) or Free Elective***	3	
Free Elective***	2	

General Education Notes:

§ WRT 123 IS A 4-CREDIT COURSE, SO THE FOURTH CREDIT COUNTS AS A FREE ELECTIVE.

- Transfer Students Should Refer to the Catalog for General Education Requirements
- Students are encouraged to take courses that meet multiple requirements, for EXAMPLE, COURSES THAT ARE BOTH "W" and "J" cOURSES
See Sample Plan for information regarding requirements for admissions to MBA Program. Program Specific Notes
* MAT 421 should be taken immediately after MAT261

B.S. Mathematics: Actuarial Science
 Sample Course Plan
 Students Admitted Fall 2024/Spring 2025

Year	Fall	Spring
1	FYE MAT 125 MAT 161 ECO 112 WRT 120/ WRT 123	MAT 162 MAT 200 ECO 111 Gen Ed Science STA 200
2	MAT 261* MAT 311 MAT 371 ACC 201 WRT 200-level	MAT 421* STA 319 FIN 325 Gen Ed Behavioral /Social Science Gen Ed Science
3	STA 419 FIN 330 MAT423 I Course Gen Ed Humanities	MAT 343 MAT 422 ECO 340 JW Course Free Elective***
4	Gen Ed Arts Gen Ed Ethics ENG 368, ENG 371, or ENG 375 (W) Gen Ed Humanities Free Elective***	MAT 478 MAT 491 Internship** or Free Elective*** Free Elective*** Free Elective***

General Education Notes:

- Transfer Students Should Refer to the Catalog for General Education Requirements.
- Students are encouraged to take courses that meet multiple requirements, for example, courses that are both "W" and " J " courses.
- Writing Emphasis Courses: Two "W" courses in addition to ENG 368, ENG 371, or ENG 375.
- Speaking Emphasis Courses: Three "S" courses.

Program Specific Notes

* MAT 421 should be taken immediately after MAT 261
** May be taken for variable credit and repeated for credit.
*** Must be approved by advisor.

Pre-MBA Courses must be passed with a "B" or better.

A GMAT score of 460 (or its equivalent GRE score) is required for admission to the M.B.A. program. The GMAT requirement will be waived, if your overall GPA is at least 3.3 and you earn a B or better in each of the following courses: Management, Accounting, Marketing, Economics, Finance, and Statistics.

Fall 2024/Spring 2025 - B.S. Mathematics: Applied and Computational Mathematics - 120 credits

GENERAL EDUCATION REQUIREMENTS (43 LESS 9 ATTRIBUTED TO MAJOR REQUIREMENTS = 34 CREDITS)		
	CREDITS	Semester
First Year Experience (FYE)	4	
WRT 120/ WRT 123§	3	
WRT 200-Level Course	3	
MATHEMATICS (MAT 311 BELOW)	3	
DIVERSE COMMUNITIES "J" COURSE	3	
INTERDISCIPLINARY "I" COURSE	3	
SCIENCE (CSC 141 below)	3	
SCIENCE (PHY 170, BIO 110, CHE 103, or ESS 101 below)	3	
BEHAVIOR \& SOCIAL SCIENCES	3	
BEHAVIOR \& SOCIAL SCIENCES	3	
HUMANITIES	3	
HUMANITIES	3	
ARTS	3	
ETHICS REQUIREMENT: ONE "E" COURSE	3	
ADDITIONAL GENERAL EDUCATION REQUIREMENTS		
WRITING EMPHASIS COURSES: ONE "W" COURSE IN ADDITION TO ENG 368, ENG 371, OR ENG 375 and MAT 455		
SPEAKING EMPHASIS COURSES: TWO "S" COURSES IN ADDITION TO MAT 455		
CAPSTONE COURSE: MAT 455 INDUSTRIAL MATHEMATICS PRACTICUM		
COGNATE REQUIREMENTS (21-23 CREDITS)		
CSC 141 Computer Science I	3	
ENG 368, ENG 371, or ENG 375 Technical /Business Writing (W)	3	
PHY 170, BIO 110, CHE 103, or ESS 101	3-4	
Cognate 1*	3-4	
Cognate 2*	3	
Cognate 3*	3	
Cognate 4*	3	

GENERAL EDUCATION NOTES:

- Transfer Students Should Refer to the Catalog for General Education Requirements.
- Students are encouraged to take courses that meet multiple requirements, for example, courses that are both " W " and " J " courses.
- Writing Emphasis Courses: One "W" course in addition to ENG 368, ENG 371, or ENG 375 and MAT455
- Speaking Emphasis Courses: Three " S " courses.
- Ethics Requirement: One "E" course

MATHEMATICS CORE REQUIREMENTS (18 CREDITS)		
	Credits	Semester
MAT 161 Calculus I	4	
MAT 162 Calculus II	4	
MAt 200 Nature of Mathematics	3	
MAT 261 Calculus III	4	
MAT 311 Linear Algebra	3	
BS APPLIED AND COMPUTATIONAL CONCENTRATION COURSES (33 LESS 3 ATTRIBUTED TO CAPSTONE REQUIREMENT = 30 CREDITS)		
MAT 125 INTRODUCTION TO STATISTICS AND PROBABILITY	3	
STA 200 INTROCUCTION TO STATISTICS II	3	
STA 319 APPLIED STATISTICS	3	
MAT 325 NUMERICAL ANALYSIS I	3	
MAT 343 DIFFERENTIAL EQUATIONS	3	
MAT 413 COMPUTER ALGEBRA	3	
MAT 425 NUMERICAL ANALYSIS II	3	
MAT 433 MATHEMATICAL MODELING	3	
MAT 443 APPLIED ANALYSIS I	3	
$\begin{array}{ll}\text { ANY ONE: } & \begin{array}{l}\text { MAT } 445 \text { COMPLEX VARIABLESOR } \\ \\ \text { MAT } 441 \text { REAL ANALYSIS I }\end{array}\end{array}$	3	
MAT 455 INDUSTRIAL MATHEMATICS PRACTICUM	3	
INTERNSHIP OR FREE ELECTIVES (15-17 CREDITS§)		
MAT 491 INTERNSHIP IN APPLIED MATHEMATICS** OR FREE ELECTIVES	2-4 OR 3	
FREE ELECTIVES***	2-6	

PROGRAM SPECIFIC NOTES:

* Select four Science Cognates (PHY, BIO, CHE, CSC, ESS) under guidance of advisor. At least two cognates must be at the 200-level or above. Discuss with your advisor any prerequisites for example, CSC 220 requires MAT151.
** May be taken for variable credit and repeated for credit.
*** Must be approved by advisor. A minor may be obtained by electing appropriate additional classes in a single scientific discipline.

B.S. Mathematics: Applied and Computational Mathematics
 Sample Course Plan
 Students Admitted Fall 2024/Spring 2025

Year	Fall	Spring
1	FYE MAT 125 MAT 161 CSC 141 WRT 120 / WRT 123	MAT 162 MAT 200 PHY 170, BIO 110, CHE 103, or ESS 101 Gen Ed Behavioral/Social Science Gen Ed Humanities
2	MAT 261 MAT 311 Cognate 1* WRT 200-level Gen Ed Humanities	STA 200 MAT 343 MAT 325 Cognate 2* Gen Ed Behavioral/Social Science
3	MAT 413 MAT 425 MAT433 Cognate 3* Gen Ed Arts	STA 319 MAT 443 ENG 368, ENG 371, or ENG 375 (W) JW Course Elective***
4	MAT 445 or MAT 441 Cognate 4* IW Course Free Elective***	MAT 491** MAT 455 Free Elective*** Free Elective***

General Education Notes:

- Transfer Students Should Refer to the Catalog for General Education Requirements.
- Students are encouraged to take courses that meet multiple requirements, for example, courses that are both "W" and "J" courses.
- Writing Emphasis Courses: One "W" course in addition to ENG 368, ENG 371, or ENG 375 and MAT455.
- Speaking Emphasis Courses: Two "S" courses in addition to MAT 455.
- Ethics Requirement: One "E" course.

Program Specific Notes

* Select four Science Cognates (PHY, BIO, CHE, CSC, ESS) under guidance of advisor. At least two cognates must be at the 200-level or above. Discuss with your advisor any prerequisites, for example, CSC 220 requires MAT 151.
** May be taken for variable credit and repeated for credit.
*** Must be approved by advisor. A minor may be obtained by electing appropriate additional classes in a single scientific discipline. Discuss this option with your advisor.

Fall 2024/Spring 2025 - (Accelerated) B.S. To M.S. Applied and Computational Mathematics - 138 credits

General Education Requirements (43 Less 9 Attributed TO Major Requirements = 34 Credits)		
	Credits	Semester
First Year Experience (FYE)	4	
WRT 120/ WRT 123§	3	
WRT 200-Level Course	3	
Mathematics (Mat 311 below)	3	
Diverse Communities "J" course	3	
Interdisciplinary "I" Course	3	
SCIENCE (CSC 141 below)	3	
SIIENCE (PHY 170 below)	3	
Behavior \& Social Sciences	3	
Behavior \& Social Sciences	3	
Humanities	3	
Humanities	3	
ARTS ETHICS	3	
ETHICS	3	
Additional Baccalaureate Requirements (3)		
WRiting Emphasis Courses: One"W" courses in addition to ENG 368, ENG 371, OR ENG 375 AND MAT 455		
SPEAKING Emphasis Courses: Two "S" COURSE In Addition to mat 455		
Capstone Requirement: MAT455 Industrial Practicum		
Cognate Requirements (21-23 credits)		
CSC 141 Computer Science I 3		
ENG 368, ENG 371, OR ENG 375 TECHNICAL /BUSINESS WRITING		
(W) 3		
PHY 170, BIO 110, CHE 103, OR ESS 101 3-4		
Cognate 1*		
Cognate 2*		
Cognate 3*		
Cognate 4*		

Mathematics Core Requirements (18 credits)		
MAT 161 Calculus I	4	
MAT 162 Calculus II	4	
MAT 200 Nature of Mathematics	3	
MAT 261 Calculus III	4	
MAT 311 Linear Algebra	3	
BS Applied and Computational Concentration Courses (33 less 9 Attributed to Capstone and Graduate Requirements $=24$ credits)		
MAT 125 Introduction to Statistics and Probability	3	
STA 200 Introduction to Statistics II	3	
STA 319 Applied Statistics	3	
MAT 325 Numerical Analysis I	3	
mat 343 Differential Equations	3	
MAT 413 Computer Algebra	3	
MAT 425 Numerical Analysis II	3	
MAT 433 MATHEMATICAL MODELING (MAT548 BELOW)	3	
MAT 443 Applied Analysis I	3	
Any one: MAT 445 Complex Variables or mAt 441 Real Analysis I (MAT 575 Or MAT 545 below)	3	
MAT 455 Industrial Mathematics Practicum	3	
INTERNSHIP OR ELECTIVES ($15-17$ less 6 attributed to Graduate Requirements $=9-11$ CREDITS \S))		
MAT 491 Internship In Applied Mathematics**	2-4	
Free Electives (MAT 549 below)	3	
Free Electives (MAT 554 below)	3	
Free Electives***	3	
Free Electives***	3	
Free Electives***	1-3	

General Educaion Notes:
§ WRT 123 is a 4-Credit course, so the fourth credit counts as a free elective.

- Transfer Students Should Refer to the Catalog for General Education Requirements.
- Students are encouraged to take courses that meet multiple requirements, FOR EXAMPLE, COURSES THAT ARE BOTH "W" AND "J" courses.

Graduate Requirements (36 CREDITS Less 6 Credits waived $=30$ CREDITS)		
MAT 500 FUNDAMENTALS OF APPLIED MATHEMATICS (A)	3	
MAT 548 Industrial Mathematics I-Continuous Models	3	
MAT 549 Industrial Mathematics II-Discrete Models	3	
MAT552Operations Research	3	
MAT 553 Stochastic Modeling	3	
MAT 554 Scientific Computing	3	
MAT 555 INDUSTRIAL PRACTICUM I (A)	3	
MAT 556 INDUSTRIAL PRACTICUM II (A)	3	
STA 505 Mathematical Statistics I	3	
StA 511 Intro Stat Computing \& Data Management	3	
MAT 575 OR MAT 545 (MAT ELECTIVE)	3	
MAT/STA ELECTIVE (B)	3	

Program Specific Notes:

- May be taken for variable Credit and repeated for credit.
** Must be approved by advisor.
*** Any courses in mathematics with course numbers above 311, with the exception of those COURSES WITH A PRIMARY FOCUS ON TEACHER EDUCATION OR THOSE COURSES RESTRICTED TO STUDENTS MAJORING IN ELEMENTARY EDUCATION.
\wedge Mat455 requires Mat433 AS A PREREQUISIte, ACCELERATED STUDENTS Should take MAT548 (GRADUATE EQUIVALENT OF MAT433) TO MEET THE PREREQUISITE.
(A) Mat500 and one practicum course (Mat555 or Mat556) ARE WAIVED for accelerated program STUDENTS.
(B) Choose any 500-LeVEl MAT or STA COURSE NOT COMPLETED TO FULFILL OTHER DEGREE REQUIREMENTS.
(C) STUDENTS IN THE ACCELERATED PROGRAM MAY ROLL UP TO 15 CREDITS OF GRADUATE COURSEWORK taken as an undergraduate toward their master's degree. be careful not to exceed the 15 CREDIT LIMIT.

(Accelerated) B.S. to M.S. Applied and Computational Mathematics Sample Course Plan
 Students Admitted Fall 2024/Spring 2025

Year	Fall	Spring
1	FYE MAT 125 MAT 161 CSC 141 WRT 120 / WRT 123	MAT 162 MAT 200 PHY 170, BIO 110, CHE 103, or ESS 101 Gen Ed Behavioral/Social Science Gen Ed Humanities
2	MAT 261 MAT 311 Cognate 1* WRT 200-level Gen Ed Humanities	STA 200 MAT 343 MAT 325 Cognate 2* Gen Ed Behavioral/Social Science
3	MAT 413 MAT 425 Cognate 3* Gen Ed Arts Free Elective***	STA 319 MAT 443 ENG 368, ENG 371, or ENG 375 (W) JW Course Free Elective***
4	MAT 548 (Graduate equivalent of MAT433) MAT 552 (A) MAT 575 or MAT 545 Cognate 4^{*} IW Course	MAT491** MAT 455 MAT 549 Free Elective***
5	$\begin{aligned} & \text { MAT } 554{ }^{(B)} \\ & \text { STA } 505 \\ & \text { STA } 511 \end{aligned}$	MAT 553 MAT 555 or MAT 556 MAT/STA Elective (C)

General Education Notes:

- Transfer Students Should Refer to the Catalog for General Education Requirements.
- Students are encouraged to take courses that meet multiple requirements, for example, courses that are both "W" and "J" courses.
- Writing Emphasis Courses: One "W" courses in addition to ENG368, ENG371, or ENG375 and MAT455.
- Speaking Emphasis Courses: Two "S" courses in addition to MAT455.
- Ethics Requirement: One "E" course.

Program Specific Notes

* Select four Science Cognates (PHY, BIO, CHE, CSC, ESS) under guidance of advisor. At least two cognates must be at the 200-level or above. Discuss with your advisor any prerequisites, for example, CSC 220 requires MAT 151.
** May be taken for variable credit and repeated for credit.
*** Must be approved by advisor. A minor may be obtained by electing appropriate additional classes in a single scientific discipline. Discuss this option with your advisor.
(A) Offered Fall odd years only. Plan accordingly.
(B) Offered Fall even years only. Plan accordingly.
(C) Choose any 500-level MAT or STA course not completed to fulfill other degree requirement

Fall 2024/Spring 2025 - B.S. Mathematics: Mathematical Finance - 120 credits

General Education Requirements (43 credits)		
	Credits	Semester
First Year Experience (FYE)	4	
WRT 120/ WRT 123§	3	
WRT 200-Level Course	3	
Mathematics (MAT 311 below)	3	
Diverse Communities "J" course	3	
INTERDISCIPLINARY "I" COURSE	3	
Science (CSC 141 beLow)	3	
SCIENCE	3	
Behavior \& Social Sciences (ECO 111 below)	3	
Behavior \& Social Sciences	3	
Humanities	3	
Humanities	3	
Arts	3	
Ethics Requirement: One "E" course	3	
Additional General Education Requirements		
Writing Emphasis: Two "W" courses in addition to ENG 368, ENG 371, or ENG 375 and MAT479		
Speaking Emphasis Courses: Two "S" Courses in addition to mat479		
Capstone Course: MAT 479 Financial Calculus (W,S)	3	
INTERNSHIP OR FREE ELECTIVES (17 CREDITS§)		
MAT 491 Internship in Applied Mathematics* (optional) or Free Elective**	3	
Free Elective**	2	

General Education Notes:

§ WRT 123 IS A 4-CREDIT COURSE, SO THE FOURTH CREDIT COUNTS AS A FREE ELECTIVE.

- Transfer Students Should Refer to the Catalog for General Education Requirements.
- Students are encouraged to take courses that meet multiple REQUIREMENTS, FOR EXAMPLE, COURSES THAT ARE BOTH "W" AND "J"COURSES
See Sample Plan for information regarding requirements for admissions to MBA

Mathematics Core Requirements

MATHEMATICS Core Requirements		
(18 less 3 Attributed to General Education Requirements = 15 credits)		
	Credits	Semester
MAT 161 Calculus I	4	
MAT 162 Calculus II	4	
MAT 200 NATure of Mathematics	3	
MAT 261 Calculus III	4	
MAT 311 Linear Algebra	3	

BS Mathematical Finance Concentration Courses
(30 less 3 Attributed to Capstone Requirement = 27 credits)
MAT 125 Introduction to Statistics and Probability STA 200 Introduction to Statistics II
STA 319 Applied Statistics
MAT 343 Differential Equations
MAT 371 Mathematics of Finance
MAT 421 Mathematical Statistics I
MAT 422 Mathematical Statistics II
MAT 423 Applied Probability
MAT 443 Applied Analysis
MAT 479 Financial Calculus

COGNATE REQUIREMENTS

(21 less 6 Attributed to General Education Requirements = 15 credits)

ACC 201 Accounting I	3	
CSC 141 Computer Science I	3	
ECO 111 Principles of Macroeconomics	3	
ECO 112 Principles of Microeconomics	3	
ENG 368, eNG 371, or ENG 375 Technical/Business Writing (W)	3	
FIN 325 Corporate Finance	3	
Any one: FIN 337 Financial Markets and Institutions or FIN 344 Investments	3	

Program Specific Notes

* May be taken for variable credit and repeated for credit.
** Must be approved by advisor.

B.S. Mathematics: Mathematical Finance
 Sample Course Plan
 Students Admitted Fall 2024/Spring 2025

Year	Fall	Spring
1	FYE MAT 125 MAT 161 CSC 141 WRT 120/ WRT 123	MAT 162 MAT 200 ECO 111 Gen Ed Science STA 200
2	MAT 261 MAT 311 ACC 201 WRT 200-level Free Elective*	MAT 343 STA 319 ECO 112 Gen Ed Behavioral/Social Sciences Gen Ed Humanities
3	MAT 371 MAT 421 FIN 325 JW Course Free Elective**	MAT 422 FIN 344 or FIN 337 Gen Ed Humanities I Course Free Elective**
4	MAT 423 MAT 491 Internship* or Free Elective** ENG 368, ENG 371, or ENG 375 (W) Gen Ed Ethics Gen Ed Arts	MAT 443 MAT 479 (W,S) Free Elective** Free Elective**

General Education Notes:

- Transfer Students Should Refer to the Catalog for General Education Requirements.
- Students are encouraged to take courses that meet multiple requirements, for example, courses that are both "W" and "J" courses.
- Writing Emphasis Courses: Two "W" courses in addition to MAT479 and ENG 368, ENG 371, or ENG 375.
- Speaking Emphasis Courses: Two "S" courses in addition
- Ethics Requirement: One "E" course.

Program Specific Notes:

* Must be approved by advisor.
** May be taken for variable credit and repeated for credit.

Pre-MBA Courses must be passed with a "B" or better.

A GMAT score of 460 (or its equivalent GRE score) is required for admission to the M.B.A. program. The GMAT requirement will be waived, if your overall GPA is at least 3.3 and you earn a B or better in each of the following courses: Management, Accounting, Marketing, Economics, Finance, and Statistics

Fall 2024/Spring 2025 - B.S. Mathematics: Mathematics - 120 CREDITS

General Education Requirements (45 Credits)		
	Credits	Semester
First Year Experience (FYE)	4	
WRT 120/ WRT 123§	3	
WRT 200-Level Course	3	
MATHEMATICS (MAT 161 BELOW)	4	
DIVERSE COMMUNITIES "J" COURSE	3	
INTERDISCIPLINARY "I" COURSE	3	
SCIENCE (CSC 141 BELOW)	3	
SCIENCE (PHY 170 BELOW)	4	
BEHAVIOR \& SOCIAL SCIENCES	3	
BEHAVIOR \& SOCIAL SCIENCES	3	
HUMANITIES	3	
HUMANITIES	3	
ARTS	3	
ETHICS	3	
ADDITIONAL BACCALAUREATE REQUIREMENTS (3 CREDITS)		
WRITING EMPHASIS COURSES: One "W" COURSE IN ADDITION To ENG 371 and MAT 480		
SPEAKING EMPHASIS COURSES: ONE "S" COURSE IN ADDITION TO SPK 230 and MAT 480		
CAPSTONE REQUIREMENT: MAT 480 (S,W)		
FREE ELECTIVES (15 CREDITS§)		
FREE ELECTIVE** (MAT 401 RECOMMENDED-S,W)	3	
FREE ELECTIVE**	3	
FREE ELECTIVE** (MAT 499 INDEPENDENT STUDY RECOMMENDED*)	3	
FREE ELECTIVE (MAT 125 RECOMMENDED)	3	
FREE ELECTIVE**	3	

General Education Notes:

§ WRT 123 is a 4-credit course, so the fourth credit counts as a free elective.

- Transfer Students Should Refer to the Catalog for General Education Requirements.
- Students are encouraged to take courses that meet multiple requirements, FOR EXAMPLE, COURSES THAT ARE BOTH "W" AND "J"COURSES.

MATHEMATICS CORE REQUIREMENTS (18 CREDITS LESS 4 ATTRIBUTED TO GEN ED =14 CREDITS)		
	CREDITS	SEMESTER
MAT 161 CALCULUS I	4	
MAT 162 CALCULUS II	4	
MAT 200 NATURE OF MATHEMATICS	3	
MAT 261 CALCULUS III	4	
MAT 311 LINEAR ALGEBRA	3	
MATHEMATICS CONCENTRATION COURSES (33 CREDITS)		
MAT 343 DIFFERENTIAL EQUATIONS	3	
MAT 411 ALGEBRA	3	
MAT 421 MATHEMATICAL STATISTICS I	3	
MAT 441 REAL ANALYSIS I	3	
MAT 445 COMPLEX VARIABLES	3	
ALGEBRA ELECTIVE (MAT 321, 412, 414, or 415)	3	
ANALYSIS ELECTIVE (MAT 432, 442, 443, or 444)	3	
APPLIED MATHEMATICS ELECTIVE (MAT 325, 371, 413, 415, 422, 423,	3	
425, 427, 433, 478, or 479; or STA319)	3	
MATHEMATICS ELECTIVE**	3	
MATHEMATICS ELECTIVE***	3	
MATHEMATICS ELECTIVE***	3	
COGNATE REQUIREMENTS (17 LESS 7 ATTRIBUTED TO GEN ED =10 CREDITS)		
CSC 141 COMPUTER SCIENCE I	3	
PHY 170 PHYSICS I	4	
PHY 180 PHYSICS II	3	
ENG 371 TECHNICAL WRITING (W)	3	
SPK 230 BUSINESS SPEAKING (S)	3	

Program Specific Notes:

* May be taken for variable credit and repeated for credit.
** Must be approved by advisor.
*** ANY COURSES IN MATHEMATICS WITH COURSE NUMBERS ABOVE 311, WITH THE EXCEPTION OF THOSE COURSES WITH A PRIMARY FOCUS ON TEACHER EDUCATION OR those courses restricted to students majoring in elementary Education.

B.S. Mathematics: Mathematics
 Sample Course Plan
 Students Admitted Fall 2024/Spring 2025

Year	Fall	Spring
1	FYE MAT 161 MAT 125 (recommended) CSC 141 WRT 120/ WRT 123	MAT 162 MAT 200 PHY 170 Gen Ed Humanities Gen Ed Behavioral/Social Science
2	MAT 261 MAT 311 PHY 180 WRT 200-level Gen Ed Humanities	MAT 343 Mathematics Elective ${ }^{* * *}$ Ethics (E) Free Elective** (S/W course MAT 401 rec.) Free Elective**
3	MAT 411 MAT 421 Mathematics Elective *** Interdisciplinary (I) Gen Ed Arts	MAT 441 MAT 480 (Capstone, S, W) Algebra Elective SPK 230 (S) Diverse Communities (J)
4	MAT 445 Analysis Elective ENG 371 (W) Free Elective** Free Elective**	Free Elective** (MAT 499 recommended*) Applied Mathematics Elective Gen Ed Behavioral/Social Science Mathematics Elective***

General Education Notes:

- Transfer Students Should Refer to the Catalog for General Education Requirements.
- Students are encouraged to take courses that meet multiple requirements, for example, courses that are both "W" and "J" courses.
- Writing Emphasis Courses: One "W" course in addition to ENG 371 and MAT 480.
- Speaking Emphasis Courses: One "S" course in addition to SPK 230 and MAT 480.
- Ethics Requirement: One "E" course.

Program Specific Notes:

* May be taken for variable credit and repeated for credit.
** Must be approved by advisor.
*** Any courses in mathematics with course numbers above 311, with the exception of those courses with a primary focus on teacher education or those courses restricted to students majoring in early or middle grades education.

(Accelerated) B.S. Mathematics: Mathematics To M.A. Mathematics - 138 credits

General Education Requirements (45 CREDITS)		
	Credits	Semester
First Year Experience (FYE)	4	
WRT 120/ WRT 123§	3	
WRT 200-Level Course	3	
Mathematics (MAT161 below)	3	
Diverse Communities "j" Course	3	
Interdisciplinary "i" Course	3	
Science (CSC 141 below)	3	
Science (PHY 170 below)	3	
Behavior \& Social Sciences	3	
Behavior \& Social Sciences	3	
Humanities	3	
Humanities	3	
ArTS	3	
ETHICS	3	
Additional General Education Requirements (3 credits)		
Writing Emphasis Courses: One"W" course in addition to Eng 371 and MAT480		
Speaking Emphasis Courses: One "S" course in addition to SPK 230 and MAT480		
Capstone Requirement: MAT 480 (S,W)		
Free Electives (15 credits§)		
Free Elective** (MAT 401 recommended - S, W)	3	
Free Elective**	3	
Free Elective** (MAT 499 Independent Study recommended*)	3	
Free Elective (MAT 125 Recommended)	3	
Free Elective**	3	

General Education Notes:

§ WRT 123 is a 4 -CREDIT COURSE, SO THE FOURTH CREDIT COunts AS a FREE ELECTIVE.

- Transfer Students Should Refer to the Catalog for General Education REQUIREMENTS.
- Students are encouraged to take courses that meet multiple REQUIREMENTS, FOR EXAMPLE, COURSES THAT ARE BOTH "W" AND "J" COURSES.

MATHEMATICS Core Requirements (18 Less 4 ATTRIBUTED TO GEN ED = 14 CREDITS)		
MAT 161 Calculus I	4	
MAT 162 Calculus II	4	
MAT 200 Nature of Mathematics	3	
MAT 261 Calculus III	4	
MAT 311 Linear Algebra	3	
BS Mathematics Concentration Courses (33 credits)		
MAT 343 Differential Equations	3	
MAT 411 Algebra	3	
MAT 421 Mathematical Statistics I	3	
MAT 441 Real Analysis I	3	
MAT 445 Complex Variables	3	
Algebra Elective	3	
Analysis Elective	3	
Applied Mathematics Elective	3	
Mathematics Elective***	3	
Mathematics Elective***	3	
Mathematics Elective***	3	
Cognate Requirements (17 Less 7 ATTRIBUTED TO Gen ed $=10$ CREDITS)		
CSC 141 Computer Science I	3	
PHY 170 Physics I	4	
PHY 180 PhYSICS II	4	
ENG 371 Technical Writing (W)	3	
SPK 230 Business Speaking (S)	3	

Program Specific Notes

* May be taken for variable credit and repeated for credit.
** MUST BE APPROVED BY ADVISOR.
*** Any courses in mathematics with course numbers above 311, with the EXCEPTION OF THOSE COURSES WITH A PRIMARY FOCUS ON TEACHER EDUCATION OR THOSE courses restricted to students majoring in elementary Education.

(Accelerated) B.S. Mathematics: Mathematics To M.A. Mathematics - 138 credits (Continued)

Graduate Courses (33 less 15 ATTRIBUTED To undergraduate record 18 CREDITS)		
MAT 515 Algebra I	3	
MAT 516 Algebra II	3	
MAT 532 Geometry I or MAT535 Topology	3	
MAT 545 Real Analysis ${ }^{*}$	3	
MAT 546 Real Analysis II*	3	
STA 505 Mathematical Statistics I*	3	
MAT513 or MAT 575 (Recommended Elective)*	3	
Graduate Mathematics Elective*	3	
Graduate Mathematics Elective	3	
Graduate Mathematics Elective or Thesis	3	
Graduate Mathematics Elective or Thesis	3	

*Five graduate courses, taken before the conferral of the BS, may be dual-counted to satisfy both the MA requirements and upper division electives (algebra, analysis, applied, and two of the three unrestricted electives) for the BS program. The specific graduate courses used in this way may depend on when students enter the program and what graduate courses are offered during their fourth year. For example, in the current course rotation, students reaching Year 4 in fall of an even year may use MAT 545 to replace the analysis elective, whereas students reaching Year 4 in an odd year may use MAT 515 to replace the algebra elective. Students electing MAT 575 in Year 3 or Year 4 may use this course to replace MAT 445.

(Accelerated) B.S. Mathematics: Mathematics to M.A. Mathematics

First Year	
Fall (odd)	Spring (even)
MAT 161 (4) MAT 125 (3) (recommended) CSC 141 (3) FYE (4) WRT120/WRT123 (3)	MAT 162 (4) MAT 200 (3) PHY 170 (4) Gen Ed Humanities (3) SPK 230 (3)
Second Year	
Fall (even)	Spring (odd)
MAT 261 (4) MAT 311 (3) PHY 180 (4) WRT 200 (3) Gen Ed Behavioral/Social Science (3)	MAT 343 (3) MAT 401 S, W (recommended) (3) Gen Ed Humanities (3) Interdisciplinary (3) Free Elective (3)
Third Year	
Fall (odd)	Spring (even)
MAT 411 (3) MAT 421 (3) Gen Ed Arts (3) MAT 445** (3) Free Elective (3)	MAT 441 (3) MAT 513* (Elective) (3) ENG 371 W (3) Diverse Communities (3) MAT 480 S, W (3)
Fourth Year	
Fall (even)	Spring (odd)
MAT 545 (3)* STA 505 (3) Undergrad Math Elective (3) Ethics (3)	MAT 546 (3)* Grad Math Elective(3) MAT 499 (3) (recommended) Gen Ed Behavioral/Social Science (3)
Fifth Year	
Fall (odd)	Spring (even)
MAT 515 (3)* MAT 532 (3) Grad Math Elective or Thesis (3)	MAT 516 (3)* Grad Math Elective (3) Grad Math Elective or Thesis (3)

STUDENTS REACHING YEAR 4 IN FALL OF AN ODD YEAR WILL INSTEAD USE MAT 515 TO REPLACE THE ALGEBRA ELECTIVE AND TAKE AN ANALYSIS ELECTIVE IN YEAR 3. MAT 515-516 MAY BE TAKEN PRIOR TO MAT 545-546. ${ }^{ *}$ MAT 445 may be replaced by MAT 575 if the latter is elected in Year 3 or 4.

Fall 2024/Spring 2025 - B.S. Mathematics: Statistics - 120 credits

General Education Requirements (40 CREDITS)		
	Credits	Semester
First Year Experience (FYE)	4	
WRT 120/ WRT 123§	3	
WRT 200-Level Course	3	
Mathematics (MAT 311 below)	3	
Diverse Communities "J" COURSE	3	
Interdisciplinary "I" COURSE	3	
SCIENCE (CSC 141 below)	3	
Science	3	
Behavior \& Social Sciences	3	
Behavior \& Social Sciences	3	
Humanities	3	
Humanities	3	
ARTS	3	
Additional General Education Requirements		
Writing Emphasis Courses: Two "W" courses in addition to ENG 368, ENG 371, or ENG 375		
Speaking Emphasis Courses: Three "S" courses		
Capstone Course: STA 490		
Ethics Requirement: One "E" Course		
COGNATES (6 LESS 3 ATTRIBUTED TO GENERAL EDUCATION REQUIREMENTS - 3 CREDITS)		
CSC 141 (SCIENCE)	3	
ENG 368, ENG 371, OR ENG 375 TECHNICAL/BUSINESS WRITING	3	
Free Electives (15 credits§)		
Free Elective	3	

Mathematics Core Requirements (18 less 3 attributed to general education REQUIREMENTS=-15 CREDITS)		
	Credits	SEMESTER
MAT 161 Calculus I	4	
MAT 162 Calculus II	4	
MAT 200 Nature of Mathematics	3	
MAT 261 Calculus III	4	
MAT 311 Linear Algebra	3	
BS Statistics Concentration Courses (33 credits)		
MAT 125 Statistics I	3	
STA 200 Statistics II	3	
STA 311 Statistical Computing	3	
STA 319 Applied STATISTICS	3	
STA 320 Experimental Design	3	
STA 321 Topics in Advanced Statistics	3	
MAT 325 Numerical Analysis	3	
STA 419 Basics of Statistical Learning	3	
MAT 421 Mathematical Statistics I	3	
MAT 422 Mathematical Statistics II	3	
MAT423 Applied Probability	3	
MAT/STA Electives (3 credits)		
Free MAT/STA Elective*	3	

General Education Notes:
§ WRT 123 IS A 4-CREDIT COURSE, SO THE FOURTH CREDIT COUNTS AS A FREE ELECTIVE.

- Transfer Students Should Refer to the Catalog for General Education Requirements.
- Students are encouraged to take courses that meet multiple REQUIREMENTS, FOR EXAMPLE, COURSES THAT ARE BOTH "W" AND "J"COURSES.

Program Specific Notes:

* MUST BE APPROVED BY ADVISOR AND MAY BE AN INTERNSHIP

B.S. Mathematics: Statistics

Sample Course Plan Students Admitted Fall 2024/Spring 2025

Year	Fall	
$\mathbf{1}$	FYE	Spring
	MAT 125	MAT 161
	WRT 120/ WRT 123	MAT 200
	Gen Ed Humanities	STA 200
$\mathbf{2}$	MAT 261	MAT 311
	STA 319	Gen Ed Behavioral/Social Science
	WRT 200-level	STA 311
	Free Elective	W Course
$\mathbf{3}$	STA 320	MAT 325
	STA 321	Gen Ed Arts
	I Course	E Course
	Free Elective	MAT 423
$\mathbf{4}$	STA 419	MAT 422
	J Course	ENG 368 (W)
	W Course	Gen Ed Behavioral/Social Science
	Free Elective	Free Elective
	Gen Ed Humanities	Elective in MAT/STA*

General Education Notes:

- Transfer Students Should Refer to the Catalog for General Education Requirements.
- Students are encouraged to take courses that meet multiple requirements, for example, courses that are both "W" and "J" courses.
- Writing Emphasis Courses: Two "W" courses in addition to ENG 368, ENG 371, or ENG 375.
- Speaking Emphasis Courses: Two "S" courses in addition to SPK 230.
- Ethics Requirement: One "E" course.

Program Specific Notes

* Must be approved by advisor and may be an internship.

(Accelerated) B.S. Mathematics - Applied Statistics

Sample Schedule and Advising Sheet
Students Admitted Fall 2024/Spring 2025

	Fall	Spring
Yr 1	FYE MAT 125 MAT 161 WRT120/WRT123 Gen Ed Humanities	STA 200 MAT 162 MAT 200 CSC 141 (Gen Ed Science) SPK 230
Yr 2	MAT 261 MAT 311 WRT 200 STA 319 Gen Ed Behavioral	```MAT 325 STA 311 Gen Ed Behavioral/Social Science Gen Ed Arts E Course```
Yr 3	MAT 421 STA 320 STA 321 IW Course Gen Ed Humanities	MAT 422 MAT 423 ENG 368 (W) Gen Ed Science MAT/STA Elective
Yr 4	JW Course STA 419 STA 503 STA 505 STA 511	STA 502 STA 490 STA 506 STA 512 MAT/STA Elective
Summer	Elective in Applied Statistics (Session I) Elective in Applied Statistics (Session II)	
Yr 5	$\begin{aligned} & \text { STA } 507 \\ & \text { STA } 513 \end{aligned}$	STA 514 Elective in Applied Statistics

Note that the graduate classes in Year 4 replace:

2 Related Electives (Students are encouraged to use their year three general education electives to complete any minor of interest)
2 Upper division math/stat electives (One of which was encouraged to be an internship)

Minor Programs

Minor in Mathematics (21 Credits)

Required Courses (15 credits)
MAT 161 Calculus I (4 credits)
MAT 162 Calculus II (4 credits)
MAT 261 Calculus III (4 credits)
MAT 311 Linear Algebra or MAT315 Differential Equations (3 credits)

Approved Electives (6 credits)

Any two courses with MAT or STA prefixes and with course numbers above 311, with the exception of those MAT courses with a primary focus on teacher education or those courses restricted to students majoring in elementary education, namely, MAT 309; 312; 313; 330; 350 to 360 , inclusive; $364 ; 390$; and 400 . Students who complete MAT 315 may not count MAT 311 or MAT 343 towards the minor. Students who complete MAT 311 may not count MAT 315 towards the minor.

In this minor, a student must earn a minimum grade of C - in each course and have an average of at least 2.0 over all the courses taken in the minor.
Students must complete 18 to 30 hours of courses selected in consultation with the minor program advisor. At least 50 percent of minor course work must be taken at West Chester.

Minor in Mathematics: Grades PreK-8 (24 credits)

Required Courses

MAT 101 Mathematics for Teachers of Children I (3 credits) MAT 102 Mathematics for Teachers of Children II (3 credits) MAT 121 Statistics (3 credits)
MAT 312 Algebra for Teachers in Grades 4-8 (3 credits)
MAT 313 Geometry for Teachers in Grades 4-8 (3 credits) MAT 351 Methods for Teaching Children Mathematics (3 credits) MAT 353 Methods for Teaching Middle School Mathematics (3 credits) MAT 390 Seminar in Mathematics Education (3 credits)

In this minor, a student must earn a minimum grade of C - in each course and have an average of at least 2.0 over all the courses taken in the minor.
Students must complete 18 to 30 hours of courses selected in consultation with the minor program advisor. At least 50 percent of minor course work must be taken at West Chester.

Minor in Applied Statistics (18 credits) Required Courses

Complete one of the following calculus courses: (3 or 4 credits)
MAT 143 Brief Calculus (3 credits)
MAT 145 Calculus for the Life Sciences (3 credits)
MAT 161 Calculus I (4 credits)
Complete one of the following courses:
MAT 121 Introduction to Statistics 1 (3 credits)
ECO 251 Quantitative Business Analysis I (3 credits)
Complete the following course:
STA 200 Introduction to Statistics II
Complete at least one of the following:
STA 311 Intro Statistical Computing and Data Management (3 credits)
STA 319 Applied Statistics (3 credits)
STA 320 Experimental Design (3 credits)
MAT 421 Mathematical Statistics I (3 credits)

Elective Courses

Select from the following courses as necessary to complete a total of 18 credits:
BIO 310 Biostatistical Applications (3 credits)
CSC 321 Data Base Management Systems (3 credits)
ECO 351 Quantitative Business Analysis II (3 credits)
ECO 401 Introduction to Econometrics (3 credits)
GEO 326 Geographical Analysis (3 credits)
HEA 419 Research Methods in Health (3 credits)
MAT 421 Mathematical Statistics I (3 credits)
MIS 300 Introduction to Management Information Systems (3 credits)
MKT 360 Marketing Research (3 credits)
PPD 481 Drug Design I (3 credits)
PSY 245 Statistics for the Behavioral Sciences (3 credits)
PSY 246 Research Methods in Psychology (3 credits)
STA 311 Intro Statistical Computing and Data Management (3 credits)
STA 319 Applied Statistics (3 credits)
STA 320 Experimental Design (3 credits)
In this minor, a student must earn a minimum grade of C - in each course and have an average of at least 2.0 overall the courses taken in the minor
Students must complete 18 to 30 hours of courses selected in consultation with the minor program advisor.
At least 50 percent of minor course work must be taken at West Chester.

Interdisciplinary Minor in Computational Science (21 credits)

Required Fundamental Courses

MAT 161 Calculus I (4 credits)
MAT 162 Calculus II (4 credits)
PHY 170 Physics I (4 credits)
Required Computational Courses ${ }^{1,2}$
MAT 325 Numerical Analysis 1 (3 credits)
CSC 141 Computer Science 1 (3 credits)
Elective Computational Courses (3 credits)
PHY 275 (Computational Physics)
MAT425 (Numerical Analysis II)

1 Internship: A 3 credit hour internship with sufficient computational component could replace one of the three core computational courses after approval from the program coordinator.
2 Grade Requirement: Students need to earn in each of the three computational courses, MAT 325, PHY 275 or MAT425(choose one, not both), CSC 141 of the minor, a grade of B or higher.

Students must complete 18 to 30 hours of courses selected in consultation with the minor program advisor.
At least 50 percent of minor course work must be taken at West Chester.

Calendar of Planned Course Offerings

Developmental and 100-Level Courses				
Course	Semester or Session Offered			
	Fall	Spring	Summer	Winter
MAT Q20	$\sqrt{ }$	\checkmark		$\sqrt{*}$
MAT Q30	\checkmark	\checkmark	$\sqrt{ }$	$\sqrt{*}$
MAT 101	\checkmark	\checkmark	$\sqrt{ }$	
MAT 102	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	
MAT 103	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{*}$
MAT 104	\checkmark	\checkmark	\checkmark	
MAT 112	$\sqrt{ }$	\checkmark	\checkmark	
MAT 113	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$
MAT 115	$\sqrt{ }$	\checkmark		
MAT 121	\checkmark	\checkmark	\checkmark	$\sqrt{*}$
MAT 125	\checkmark	\checkmark		
MAT 131	\checkmark	\checkmark	$\sqrt{ }$	
MAT 143	\checkmark	\checkmark	\checkmark	\checkmark
MAT 145	\checkmark	\checkmark		
MAT 151	\checkmark	\checkmark	$\sqrt{ }$	
MAT 161	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	
MAT 162	\checkmark	\checkmark	\checkmark	

*May be offered as a distance education course

200-Level Courses				
	Semester Offered*			
Course	Fall Even Numbered Years	Spring Odd Numbered Years	Fall Odd Numbered Years	Spring Even Numbered Years
MAT 200*	\checkmark	\checkmark	\checkmark	\checkmark
MAT 261§	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
STA 200	\checkmark	\checkmark	\checkmark	\checkmark
STA 201	$\sqrt{ }$			
STA 202			\checkmark	
STA 203				$\sqrt{ }$

§Also offered in Summer.

* If there is sufficient demand, MAT 200 will be offered in Summer.

300-Level Courses				
	Semester Offered*			
Course	Fall Even Numbered Years	Spring Odd Numbered Years	Fall Odd Numbered Years	Spring Even Numbered Years
MAT 311§	\checkmark	\checkmark	\checkmark	\checkmark
MAT 312		\checkmark		\checkmark
MAT 313	$\sqrt{ }$		$\sqrt{ }$	
MAT 315		\checkmark		$\sqrt{ }$
MAT 321			\checkmark	
MAT 325		\checkmark		\checkmark
MAT 331		\checkmark		\checkmark
MAT 343		$\sqrt{ }$		$\sqrt{ }$
MAT 351 \dagger	\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
MAT 352 \dagger	\checkmark	\checkmark	\checkmark	\checkmark
MAT 353†	\checkmark	$\sqrt{ }$	\checkmark	\checkmark
MAT 371	$\sqrt{ }$		$\sqrt{ }$	
MAT 390	\checkmark		\checkmark	
STA 311		\checkmark		\checkmark
STA 319	\checkmark	\checkmark	\checkmark	\checkmark
STA 320		\checkmark		\checkmark
STA 321	$\sqrt{ }$		$\sqrt{ }$	

*If there is sufficient demand, 300-level courses will be offered during the summer.
§Also offered in Summer.
\dagger MAT 351, MAT 352, and MAT 353 are offered during a special session from mid-May to mid-June.

400-Level Courses				
	Semester Offered*			
Course	Fall Even Numbered Years	Spring Odd Numbered Years	Fall Odd Numbered Years	Spring Even Numbered Years
MAT 401		$\sqrt{ }$		\checkmark
MAT 411	\checkmark		$\sqrt{ }$	
MAT 412				\checkmark
MAT 413	\checkmark		\checkmark	
MAT 414				\checkmark
MAT 415		$\sqrt{ }$		
MAT 421	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
MAT 422		\checkmark		\checkmark
MAT 423		\checkmark		$\sqrt{ }$
MAT 425	\checkmark		\checkmark	
MAT 427			\checkmark	
MAT 432		\checkmark		
MAT 441		$\sqrt{ }$		$\sqrt{ }$
MAT 442	\checkmark			
MAT 443		\checkmark		\checkmark
MAT 445	\checkmark		\checkmark	
MAT 455		$\sqrt{ }$		$\sqrt{ }$
MAT 478		\checkmark		\checkmark
MAT 479		\checkmark		\checkmark
MAT 480		\checkmark		\checkmark
MAT 493	$\sqrt{ }$		\checkmark	
STA 419	$\sqrt{ }$		$\sqrt{ }$	
STA 490		$\sqrt{ }$		\checkmark

*If there is sufficient demand, 400 level courses will be offered during the summer.

Placement of Electives in Groups

Algebra	Analysis	Applied Mathematics
MAT 321 Combinatorics MAT 412 Algebra II MAT 414 Number Theory MAT 415 Introduction to Cryptography§§	MAT 343 Differential Equations** MAT 432 Topology MAT 442 Real Analysis II MAT 443 Applied Analysis I MAT 444 Applied Analysis II MAT 445 Complex Variables	MAT 325 Computational Mathematics MAT 343 Differential Equations** MAT 371 Mathematics of Finance MAT 413 Computer Algebra MAT 415 Introduction to Cryptography§§ MAT 422 Mathematical Statistics II MAT 423 Applied Probability MAT 425 Numerical Analysis MAT 427 Optimization MAT 478 Fundamentals of Actuarial Science MAT 479 Financial Calculus MAT 493 Modeling STA 319 Applied Statistics

**MAT 343 cannot be credited to both areas.
§§MAT 415 cannot be credited to both areas.

Other Upper-Division Electives:

MAT 332 Differential Geometry
MAT 401 History of Mathematics
MAT 405 Special Topics in Mathematics
MAT 432 Topology
MAT 490 Seminar in Mathematics

Note: Mathematics courses designed for education majors or as general education courses may not count as mathematics electives, namely, MAT 301, MAT 302, MAT 309, MAT 312, MAT 313, MAT 350, MAT 351, MAT 352, MAT 353, MAT 354, MAT 360, MAT 364, and MAT 390.

Special Opportunities for Undergraduates

Accelerated, 3 + 2 Graduate Programs

The Department offers four accelerated, 3+2 graduate programs for capable and motivated students. These programs allow students to complete their baccalaureate and master's degree in five years comprised of three years of undergraduate study followed by two years of graduate study. Accelerated programs are offered in:

- Mathematics B.A. - M.A. in Mathematics Accelerated Program
- Mathematics B.S. - Applied and Computational Mathematics Concentration to M.S. in Applied and Computational Mathematics Accelerated Program
- Mathematics B.S. - Mathematics Concentration to M.A. in Mathematics Accelerated Program
- Mathematics B.S. - Statistics Concentration to M.S. in Applied Statistics Accelerated Program

For program requirements and sample course plans see:
http://catalog.wcupa.edu/general-information/index-course-prefix-guide/program-index/

Actuarial Science Recognition

Most students in the Actuarial Science program take preliminary exams of the Society of Actuaries (SOA). Our courses prepare students fully for the Probability (P) exam, the Financial Mathematics (FM) exam, and the Statistics of Risk Modeling* (SRM) exams. In addition, we have several courses that contain material to prepare students for both the Short- and Long- Term Actuarial Mathematics* (STAM and LTAM) exams, the Financial Markets (IFM) exam and the Predictive Analytics* (PA) exam. We also have courses which will earn students Validation by Educational Experience (VEE) credit from the SOA. As an incentive for passing an actuarial exam, our students receive the Actuarial Recognition Award, a \$100 cash award, and recognition at our Annual Awards Banquet. (*These are new exams of the SOA and will be offered for the first time after July 2018.)

Annual Actuarial Science and Mathematics Interview Day

West Chester University and Arcadia University co-host our Annual Actuarial Science and Mathematics Interview Day each September. At this event, WCU students interview for internships and jobs in the actuarial or other related fields. Alumni of the program often interview our students. Participating companies often include: Penn Mutual, TransAmerica, Willis Towers Watson, LTCG, Lincoln Financial Group, Voya, Venerable, Independence Blue Cross, Aon, and CBIZ.

Cayman Islands Summer Experience

Actuarial Science and Mathematical Finance majors can enroll in summer courses at the University College of the Cayman Islands. Students take either HIS 120, Caymanian Society, or HIS 121, Survey of Caribbean History, both of which count as Diversity "J" courses and for their second course students select one of:

ENG 231 Business Communication - [Transfers as ENG 368]
ACC 121 Introduction to Accounting - [Transfers as ACC 201]
ECO 221 Principles of Microeconomics - [Transfers as ECO 111]
ECO 222 Principles of Macroeconomics - [Transfers as ECO 112]

Research Experiences for Undergraduates (REU)

Summer research programs for undergraduate mathematics students are available at various sites across the country. These are particularly valuable for students who are considering graduate school, and the summer following the junior year is an ideal time to participate. Application deadlines typically fall in February or March, and most programs provide a stipend.

More information about specific programs is available from the American Mathematical Society at http://www.ams.org/programs/students/emp-reu, the National Science Foundation at https://www.nsf.gov/crssprgm/reu/, and the Society for Industrial and Applied Mathematics at http://www.siam.org/students-education/programs-initiatives.

Recommended Preparation for Graduate Study

Recommended Mathematics Courses

The following courses are recommended for students intending to enter a graduate program in pure or applied mathematics:

MAT 343 Differential Equations
MAT 412 Algebra II
MAT 414 Theory of Numbers
MAT 421 Mathematical Statistics I
MAT 422 Mathematical Statistics II
MAT 432 Topology
MAT 442 Real Analysis II (or MAT 444 Applied Analysis II)
MAT 445 Complex Variables

Recommended Computer Science Courses

Mathematics and statistics majors generally are encouraged to take courses in computer science. The following courses are recommended.

CSC 141 Computer Science I
CSC 142 Computer Science II
CSC 240 Computer Science III
CSC 241 Data Structures \& Algorithms
CSC 321 Database Management Systems

General Department Information

Advanced Placement Credit

The University's policy for granting credit is as follows:

AP Course	AP SCORE	Credits Awarded	Credit Given For
Precalculus	3	3	MAT115 (Algebra and Trigonometry)
Precalculus	4,5	3	MAT131 (Precalculus)
Calculus AB	3	3	MAT 143 or MAT 145 (for BIO majors)
Calculus AB	4,5	4	MAT 161
Calculus BC Calculus AB Sub-score Calculus BC Score	4,5	4,5	4
Statistics	3	4	MAT 161
Statistics	4,5	3	MAT 162 121

Computer Labs

The Mathematics Department has two computer labs, UNA 103 and UNA 109. These computers have all the mathematics software needed for classes. Mathematics majors can obtain access to these labs Monday through Friday 8 a.m.-10 p.m., when not in use for instruction.

Individualized Instruction

Individualized instruction is the teaching of a regular, listed catalog course to a single student. Individualized instruction is offered only when the University has cancelled or failed to offer a course according to schedule. The Individualized Instruction Form is available from the Registrar's Office web page.

Independent Study

Qualified students may take a course on an independent study basis. This alternative is appropriate when a student has a specialized and compelling interest that cannot be pursued within the framework of a regular course. A GPA of at least 2.00 both overall and within the student's major are required. Independent Study Forms may be obtained from the Registrar's Office web page.

Mathematics Colloquia

The Department of Mathematics frequently hosts colloquia on important topics in mathematics or mathematics education. The talks are presented by our faculty, visiting faculty members, former students, and sometimes even current upper-class undergraduate or graduate students.

Pi Mu Epsilon

Pi Mu Epsilon is a national mathematics honor society. Induction is by invitation based on mathematics GPA.

Social Activities

There are opportunities for faculty and students to socialize. Both are invited to attend the Annual Awards Ceremony as well other events sponsored by individual faculty members and student organizations.

Tutoring

When you need help, you should first visit your professor during his/her office hours. These office hours are posted on the bulletin boards throughout 25 University Avenue and on the instructor's course syllabus.

Free tutoring is also usually available to mathematics students in the Mathematics Learning Center (MLC). The tutors often are undergraduate or graduate mathematics majors. The tutoring hours are posted on the door of room 124 of 25 University Avenue and on the bulletin boards throughout the mathematics building.

The American Statistical Association WCU Student Chapter

This is a student-run academic club where both undergraduate and graduate students are welcome to join. We host networking events, career-related seminars, STEM nights with local schools and much more. Being a member of this club gives you access to scholarships, mentorships, and job opportunities. It is also a great way to meet with and make friends with students in the field.

MAA Chapter

There is a Mathematics Department membership with the Mathematical Association of America (MAA) for all Math students. MAA is the world's largest community of mathematicians, students, and enthusiasts. Math students can access the virtual programs https://www.maa.org/programs-and-communities/virtual-programming for a variety of professional development opportunities, including webinars, workshops, minicourses, panel discussions, and research seminars. Students also receive all the benefits of MAA membership, including MAA Connect (online communities where members gather to learn and share), 3 free virtual program events per year (and a member discount on others), access to the MAA Career Resource Center https://mathcareers.maa.org/, access to 11 online mathematical journals and magazines and MAA FOCUS, membership in local MAA section, member discount for MAA MathFest, and more.
https://www.maa.org/membership/membership-categories/maa-member-benefits

The Department's Scholarship/Award Programs

The Department of Mathematics Scholarship Program was founded in 1974 by Dr. James L'heureux. The scholarships and awards are given annually at an awards ceremony held each fall. The ceremony is attended by faculty, award recipients, friends, and family members.

The Mathematics Scholarship (1974)

The Mathematics Scholarship was created in 1974 by the faculty of the Department of Mathematical Sciences. The initial purpose was to raise funds for an endowment that would generate enough interest to provide several monetary awards to undergraduate majors of the department for their high academic achievements.

Class of '43 Scholarship (1991)

Two class members of the Class of 1943, Jean Stevenson and Oreste Leto established this fund in celebration of their $50^{\text {th }}$ Class Reunion.

Mark Weiner Memorial Scholarship (1992)

Mark Wiener was a Professor of Mathematics, Mathematics Education, and Computer Education at West Chester University. He was the sponsor of the Anderson Math Club and was President of the Association of Teachers of Mathematics of Philadelphia and Vicinity (ATMOPAV).

Michael P. Montemuro Memorial Scholarship (1998)

Dr. Michael P. Montemuro, who served as Chair of the Department of Mathematics and Professor of Mathematics, was a member of the University faculty for 34 years. He was very active in the faculty union and served as president of ASPCUF for 18 years. Dr. Montemuro received the Distinguished APSCUF Service Award, the West Chester University Presidential Service Award, and was coach of the University ski team.

Dr. and Mrs. Albert E. Filano Mathematics Scholarship (2000)

Dr. Albert E. Filano was a long-serving faculty member and administrator, serving the University for more than 35 years as Professor of Mathematics, Department Chair, Division Director, Academic Vice President, Interim President and advisor to the Newman Center. The scholarship fund was established as part of the naming of Filano Hall dedicated on August 19, 2000, the couple's $50^{\text {th }}$ wedding anniversary.

Benjamin E. Faber Endowed Scholarship (2002)

This scholarship was created by George and Karin Faber, parents of Benjamin, after his death in an automobile accident on October 30, 2001, when a deer struck his car. Ben was a 1996 graduate of Unionville High School. He received an associate degree with honors from Delaware County Community College and was a senior at West Chester University pursuing both mathematics and physics. Ben was also a member of Phi Theta Kappa national honor fraternity. Ben earned the rank of Eagle Scout while a member of Troop 22.

Applied Statistics Endowment (2008)

The Applied Statistics Graduate Degree Program was created in Fall of 2003 andthis fund was created to provide an award to graduate students in the Program who have shown exceptional academic achievement in their studies.

Frank Milliman Endowed Scholarship (2008)

For 48 years Professor Frank Milliman taught, mentored, and advised thousands of West Chester University students. Among his former students, one can easily find university professors, professional mathematicians, actuaries, and literally hundreds of current secondary school mathematics teachers who constantly tell us how they strive to teach mathematics, to assess student achievement (with high standards), and to be available for students the way Professor Milliman was for them. Professor Milliman's name will always be synonymous with the Department of Mathematics.

Mary Pinder Nunan'43 Endowed Scholarship (2015)

When Mary Pinder was a junior at West Chester State Teachers College she won a mathematics award for excellence. This event, in the spring of 1942, had a great impact on Mary and she always knew that one day she would create her own scholarship for West Chester mathematics majors. In the spring of her senior year, her dean asked her if she would be willing to substitute teach math at Pierre S. du Pont High School in Delaware. Mary accepted the position and took the bus from outside (Old) Main Hall to Delaware every day to teach. In May, Mary attended her West Chester graduation and returned to du Pont Monday, as its school year did not end until mid-June. She graduated with the highest honors and three majors: mathematics, English, and social studies.

Actuarial Science Award Fund (2016)

Established by the Department of Mathematics, the purpose of this fund is twofold:
(a) to reimburse, either partially or fully, those West Chester students who have passed one of the actuarial examinations offered by the Society of Actuaries,
Casualty Actuarial Society, or other certifying organization; and (b) to recognize excellence in actuarial science.

Class of 1963 Scholarship for Promising Math Education Majors (2016)

Jim Rubillo credits Albert E. Filano and Frank Milliman for recognizing and supporting students who demonstrated promise in mathematics education. After graduating in 1963, Jim embarked on a 47 year career in public education. He remained active within several mathematics professional associations at the state and national levels and provided teacher professional development programs in fifty states and across Canada. Most recently, Jim served as the Executive Director of the National Council of Teachers of Mathematics (NCTM) for eight years. Jim received the Ross Taylor/Glenn Gilbert National Leadership Award of the National Council of Supervisors of Mathematics, and the NCTM Lifetime Achievement Award for Distinguished Service to Mathematics Education. Jim also received the University's Distinguished Alumni Award and an honorary Doctor of Science degree. This scholarship awards a math education senior who demonstrates leadership and excellence in mathematics education courses.

Grosshans Hirsch Applied Mathematics Endowment (2016)

Dr. Michael Hirsch graduated in 1996 with a Bachelor of Arts in Mathematics and Computer Science. He later attained a Masters in Applied Mathematics from the University of Delaware and a Doctor of Philosophy in Operations Research from the University of Florida. Dr. Hirsch credits Dr. Frank Grosshans, an accomplished West Chester University faculty member and mathematician, for introducing him to the government defense field, where he has spent over 20 years developing solutions for both defense and commercial problems. Today, Michael is the owner and President of ISEA TEK (Industrial \& Systems Engineering Analysis Technologies). This scholarship recognizes a mathematics major who demonstrates potential and excellence in several core mathematics courses.

Katherine Smith Math Endowment (2016)
Katherine Smith graduated from West Chester University in 2011 with a Bachelor of Science in Mathematics Education. Katherine's father, Richard, and mother, Patricia who is a 1977 West Chester University alumna, established this scholarship in honor of their daughter. This scholarship recognizes a student majoring in mathematics who demonstrates high academic achievement in the view of mathematics faculty.

M.S. Applied Statistics Fund (2016)

Established following the generous contribution of alumna. April Taylor M'11, this fund offers support for programming, speakers or events that enhance the experience of students and alumni of the Applied Statistics Graduate Program.

ذames L'heureux Scholarship (2017)

Dr. James L'heureux joined the faculty of West Chester State College in 1969. In 1974, Professors L'heureux, Branton, Morgan, and Verno raised $\$ 112$ from selling books, which marked the beginning of the Mathematics Scholarship Fund. Under the leadership of Dr. L'heureux, this fund grew to over $\$ 100,000$ by his retirement in 2000 and today it has a balance of well over $\$ 640,000$. In addition to the Mathematics Scholarship Fund, Dr. L'heureux also encouraged friends of the Department to establish other scholarship funds for our students. The L'heureux Endowment was established by colleagues of Dr. L'heureux in recognition of and gratitude for all he has done for the Department and our students.

Viorel Nitica Scholarship (2021)

Dr. Viorel Nitica was an excellent teacher and prolific scholar with a wide range of research Interests including: operating algebras, dynamical systems, geometry of max-plus spaces, topological groups and Lie groups, tilings and combinatorics, and number theory. In 2012, he received West Chester University Trustee's Achievement Award in recognition of his scholarship.

Wynne Family Applied Statistics Scholarship (2023)

Brian Wynne has had a distinguished career in the pharmaceutical industry and currently serves as Executive Director of Advanced Analytics at Endo Pharmaceuticals. After serving as an adjunct faculty member in our Applied Statistics Program and creating and supervising Applied Statistics internships at both AstraZeneca and Endo, Brian created this
scholarship to support WCU students who show potential in the field of Applied Statistics. This scholarship will be awarded to students entering their first year in the Accelerated BS in Mathematics - Statistics Concentration to MS in Applied Statistics Program who have shown academic excellence in their undergraduate studies, particularly in their mathematics and statistics classes; who have shown strong potential for future careers in the applied statistics field; and who have demonstrated commitment to the mathematics and statistics community at West Chester University.

Schmidt Family Scholarship Endowment (2023)

The Schmidt Family supports mathematics students at West Chester University. Local to the region, and proud alumni, the Schmidt Family is committed to supporting Golden Rams of today and tomorrow.

John Buchanan '79 Actuarial Science Scholarship (2024)
This award is given to a student interested in pursuing a career as an Actuary.

Catalog Descriptions of Mathematics Courses

MAT Q20. Fundamental Skills in Arithmetic. 3 Credits.

This course is designed to strengthen basic arithmetic skills and to introduce the elements of algebra. Mathematics placement required. Credits earned in Q00-level courses do not count toward the 120 hours of credit needed for graduation.
Pre / Co requisites: MAT Q20 requires a prerequisite of an appropriate score on the Mathematics Placement Examination.
Distance education offering may be available. Winter

MAT Q30. Fundamentals of Algebra. 3 Credits.

This course is designed to strengthen basic algebraic skills. Credits earned in Q00-level courses do not count toward the 120 hours of credit needed for graduation.
Pre / Co requisites: MAT Q30 requires an appropriate score on the Mathematics Placement Examination.
Distance education offering may be available
MAT 100. Mathematics for Teachers of Children I. 4 Credits.
This course is designed to address sets; functions; logic; development of whole numbers, integers, and rationals (including ratios, proportions, and percents); number theory; problem solving. It integrates additional support to strengthen arithmetic and basic algebraic skills. This class is for students seeking Certification in Grades PK-4 or 4-8.
Crosslisted Courses: MAT100;MAT101.

MAT 101. Mathematics for Teachers of Children I. 3 Credits.

Sets; functions; logic; development of whole numbers, integers, and rationals (including ratios, proportions, and percents); number theory; problem solving. For students seeking Certification in Grades PK-4 or 4-8 only.
Pre / Co requisites: MAT 101 requires a grade of C- or better in MAT Q20 or an appropriate score on the Mathematics Placement Examination.
Crosslisted Courses: MAT100; MAT101.
MAT 102. Mathematics for Teachers of Children II. 3 Credits.
Development of real numbers; geometry; measurement; probability and statistics; problem solving. For students seeking Certification in Grades PK-4 or 4-8 only.
Pre / Co requisites: MAT 102 requires prerequisite of MAT 101.

MAT 103. Introduction to Mathematics. 3 Credits.

This course is a liberal arts introduction to the nature of mathematics. Topics are chosen from among logic, graph theory, number theory, symmetry (group theory), probability, statistics, infinite sets, geometry, game theory, and linear programming. These topics are independent of each other and have as prerequisite the ability to read, reason, and follow a logical argument.
Pre / Co requisites: MAT 103 requires a prerequisite of a grade of C- or better in MAT Q20 or an appropriate score on the Mathematics Placement Examination.
Distance education offering may be available.

MAT 104. Introduction to Applied Mathematics. 3 Credits.

The course is designed to help prepare students to understand almost any quantitative issues they will encounter in contemporary society. Topics are selected from the following: principles of reasoning, problem-solving tools, financial management, exponential growth and decay, probability, putting statistics to work, mathematics and the arts, discrete mathematics in business and society and the power of numbers.
Pre / Co requisites: MAT 104 requires a prerequisite of a grade of C- or better in MAT Q20 or an appropriate score on the Mathematics Placement Examination.

MAT 112. Algebra and Functions with Support. 4 Credits.

This course covers basic algebra skills, followed by a thorough treatment of polynomial, rational, exponential, and logarithmic functions. Successful completion of the course prepares students for MAT 143.
Pre / Co requisites: MAT 112 requires an appropriate score on the Mathematics Placement Examination.
Consent: Permission of the Department required to add.
Cross listed courses MAT 112, MAT 113.

MAT 113. Algebra and Functions. 3 Credits.

A review of basic algebra, followed by a thorough treatment of polynomial, rational, exponential, and logarithmic functions. Successful completion of this course prepares students for MAT 143.
Pre / Co requisites: MAT 113 requires a prerequisite of a grade of C- or better in MAT Q30 or an appropriate score on the Mathematics Placement Examination.
Cross listed courses MAT 112, MAT 113.
MAT 115. Algebra, Functions, and Trigonometry. 3 Credits.
Topics include polynomial, rational, exponential, logarithmic, and trigonometric functions. An emphasis is placed on using technology to understand topics of importance in the life and earth sciences. Successful completion of this course prepares students for MAT 143 or MAT 145.
Pre / Co requisites: MAT 115 requires a grade of C- or better in MAT Q30 or an appropriate score on the Mathematics Placement Examination.

MAT 121. Introduction to Statistics I. 3 Credits.

Introduction to statistics and statistical inference. Concepts include: descriptive statistics, sampling distributions, confidence intervals, hypothesis testing, along with a formal introduction to linear regression and categorical data analysis. Statistical software including, but not limited to SPSS and Excel, will be used to facilitate the understanding of important statistical ideas and for the implementation of data analysis in many areas of application. Pre / Co requisites: MAT 121 requires a prerequisite of a grade of C- or better in MAT Q20 or an appropriate score on the Mathematics Placement Examination.Distance education offering may be available.

MAT 125. Introduction to Statistics and Probability. 3 Credits.

Introduction to probability, statistics, and statistical inference. Concepts include: descriptive statistics, probability, probability distributions, sampling distributions, confidence intervals, hypothesis testing, along with a formal introduction to linear regression and categorical data analysis. Statistical software, including but not limited to SPSS and Excel, will be used to facilitate the understanding of important statistical ideas and for the implementation of data analysis in many areas of application.
Pre / Co requisites: MAT 125 requires an appropriate score on the Math Placement Exam.

MAT 131. Precalculus. 3 Credits.

Topics include polynomial, rational, exponential, logarithmic, and trigonometric functions. An emphasis is placed on understanding function properties and graphs without the use of technology. Successful completion of this course prepares students for MAT 161. Pre / Co requisites: MAT 131 requires a prerequisite of a grade of C- or better in MAT Q30 or an appropriate score on the Mathematics Placement Examination.

MAT 143. Brief Calculus. 3 Credits.

An intuitive approach to calculus with emphasis on conceptual understanding and applications to business. Topics include differentiation, curve-sketching, optimization, integration, and partial derivatives.
Pre / Co requisites: MAT 143 requires a prerequisite of a grade of C- or better in MAT 113, MAT 115, or MAT 131; or an appropriate score on the Mathematics Placement Examination.

MAT 145. Calculus for the Life Sciences. 3 Credits.

An overview of differential and integral calculus, motivated through biological problems. Topics include mathematical modeling with functions, limits, continuity, differentiation, optimization, and integration. Graphing calculators are used as an aid in the application of calculus concepts and methods to realistic biological problems.
Pre / Co requisites: MAT 145 requires a prerequisite of a grade of C or better in MAT 115 or MAT 131; or an appropriate score on the Mathematics Placement Examination.

MAT 151. Introduction to Discrete Mathematics. 3 Credits.

Set theory, Boolean logic, elementary combinatorics, proofs, simple graph theory, and simple probability.
Pre / Co requisites: MAT 151 requires a prerequisite of a grade of C- or better in MAT Q30 or an appropriate score on the Mathematics Placement Examination.

MAT 161. Calculus I. 4 Credits.

Differential and integral calculus of real-valued functions of a single real variable with applications.
Pre / Co requisites: MAT 161 requires prerequisites of a C or better in MAT 131 or an appropriate score on the Mathematics Placement Examination.

MAT 162. Calculus II. 4 Credits.

Continuation of MAT 161 including the study of series, methods of integration, transcendental functions, and applications to the sciences.
Pre / Co requisites: MAT 162 requires prerequisite of C or better in MAT 161.

MAT 190. Topics in Mathematics. 3 Credits.

Topics announced at time of offering.
Consent: Permission of the Department required to add.

MAT 200. The Nature of Mathematics. 3 Credits.

Topics include the role of mathematics in contemporary society, career opportunities, mathematical notation and argument, structure of proofs, basic facts about logic, mathematical proofs, problem-solving techniques, and introductions to mathematical software packages.
Pre / Co requisites: MAT 200 requires a prerequisite of C or better in MAT 161. Course should be taken by the end of sophomore year.

MAT 243. Calculus and Linear Algebra for Applied Statistics. 4 Credits.
This course is designed to survey concepts from calculus and linear algebra that are relevant to the study of applied statistics. Topics include a review of differentiation and the
Fundamental Theorem of Calculus, techniques and applications of integration, infinite series, partial derivatives, multiple integrals, matrix operations, linear transformations, and eigenvectors.
Pre / Co requisites: MAT 243 requires a prerequisite of a C or higher in MAT 143 or MAT 161 or equivalent.
Distance education offering may be available.

MAT 261. Calculus III. 4 Credits.

The calculus of several variables. Topics include polar coordinates, vectors and threedimensional analytic geometry, differentiation of functions of several variables, multiple integrals, and line and surface integrals.
Pre / Co requisites: MAT 261 requires a prerequisite of MAT 162 with a C or better.

MAT 301. The Scientific Revolution. 3 Credits.

This course addresses how modern science began in the 17th century by examining its origins and including introductions to the heroes of science - Copernicus, Kepler, Galileo, and Newton.
Gen Ed Attribute: Interdisciplinary Requirement, Writing Emphasis.

MAT 302. Mathematics and Social Justice. 3 Credits.

In this course we will explore several social issues and we will discuss methods which can quantitatively illustrate that are taking place. By doing so, the hope is that each student will learn mathematical skills and techniques. This tool kit of basic mathematical skills is often referred to as Quantitative Literacy (QL). Moreover as attainment of QL is itself a social justice issue, we will explore ways to carry these skills to historically marginalized groups through service learning projects.

MAT 311. Linear Algebra. 3 Credits.

An introduction to linear algebra. Topics covered include matrices, systems of linear equations, vector spaces, linear transformation, determinants, eigenvalues, spectral theorem, and triangulation.
Pre / Co requisites: MAT 311 requires Concurrent or Prerequisite of MAT 162.

MAT 312. Algebra for Teachers in Grades 4-8. 3 Credits.

Formal structure of groups, rings, and fields with examples from the elementary curriculum.
Topics from linear algebra including matrices, determinants, and linear programming.
Pre / Co requisites: MAT 312 requires prerequisite of MAT 102.
MAT 313. Geometry for Teachers in Grades 4-8. 3 Credits.
Modern informal approach to two- and three-dimensional geometric figures, measurement, similarity, congruence, coordinate geometry, and the postulational method.
Pre / Co requisites: MAT 313 requires prerequisite of MAT 102.
MAT 315. Differential Equations and Linear Algebra. 3 Credits.
An introduction to linear algebra and differential equations. Topics include matrices, vector spaces, linear dependence, determinant, eigenvalues and eigenvectors, ordinary differential equations, initial value problems, and systems of linear ordinary differential equations. Applications to physics and engineering will be emphasized.
Pre / Co requisites: MAT 315 requires a prerequisite of C or better in MAT 162.

MAT 321. Combinatorics and Graph Theory. 3 Credits.

Introduction to set theory, graph theory, and combinatorial analysis. Includes relations, cardinality, elementary combinatorics, principles of inclusion and exclusion, recurrence relations, zero-one matrices, partitions, and Polya's Theorem.
Pre / Co requisites: MAT 321 requires prerequisites of C or better in MAT 162 and MAT 200.

MAT 325. Numerical Analysis I. 3 Credits.

A basic introduction to numerical analysis and scientific computing. Topics which will be studied include: Computer arithmetic, approximation and interpolation of functions, numerical quadratures, solutions of linear systems by direct methods, numerical solutions of nonlinear scalar equations, numerical differentiation, introduction to one step methods for the numerical solution of ordinary differential equations.
Pre / Co requisites: MAT 325 requires a prerequisite of MAT 162 with a "C" or better.

MAT 331. Foundations of Geometry. 3 Credits.

Geometric foundations from an advanced viewpoint. Topics are chosen from euclidean and noneuclidean geometrics.
Pre / Co requisites: MAT 331 requires prerequisite of C or better in MAT 162.

MAT 332. Differential Geometry. 3 Credits.

Classical differential geometry from a modern viewpoint. Curves and surfaces and shape operators. Introduction to Riemann geometry.
Pre / Co requisites: MAT 332 requires prerequisites of C or better in MAT 200, MAT 261 and MAT 331.

MAT 343. Differential Equations. 3 Credits.

The general theory of nth order, and linear differential equations including existence and uniqueness criteria and linearity of the solution space. General solution techniques for variable coefficient equations, series solutions for variable coefficient equations, and study of systems of linear equations.
Pre / Co requisites: MAT 343 requires a prerequisite of C or better in MAT 162 and MAT 311.

MAT 351. Methods for Teaching Children Math. 3 Credits.

In-depth treatment of current pedagogical strategies and materials for teaching concepts, including: early number sense; place value; addition, subtraction, multiplication, and division of whole numbers; and fractions in an elementary classroom.
Pre / Co requisites: MAT 351 requires prerequisites of MAT 101 and MAT 102.
Gen Ed Attribute: Writing Emphasis.
MAT 352. Methods for Teaching Children Mathematics II. 3 Credits.
A continuation of the pedagogical strategies and methods for teaching the topics covered in MAT 351 extended to topics such as real numbers, geometry, percent, proportional reasoning, measurement, and algebra.
Pre / Co requisites: MAT 352 requires prerequisites of MAT 351, field clearances, and Teacher Candidacy.

MAT 353. Methods for Teaching Middle School Mathematics. 3 Credits.

Techniques for teaching children mathematical concepts in the middle school standards. Topics covered include number, algebra, geometry, and probability and statistics. Pre / Co requisites: MAT 353 requires prerequisites of MAT 121, MAT 351, field clearances, and Teacher Candidacy, as well as corequisites of MAT312 and MAT313.

MAT 361. Field Experiences in Elementary School Mathematics. 2 Credits.
Teacher candidates enrolled in this course will develop and apply the knowledge, skills and dispositions needed to be an effective teacher of mathematics at the elementary level. This course will provide supportive and authentic learning experiences in local classrooms with practicing teachers. Teacher candidates will integrate content and pedagogical knowledge to develop instructional and assessment techniques that support all learners in mathematics. Pre / Co requisites: MAT 361 requires prerequisites of MAT 101 and MAT 102 and a corequisite of MAT 351.

MAT 371. Mathematics of Finance. 3 Credits.
The purpose of this course is to introduce the mathematical theory behind the concepts of: measurement of interest, annuities, yield rates, amortization of loans, sinking funds, and yield rates. Understanding the fundamental concepts of financial mathematics, and how these concepts can be applied to calculate present and future values of various financial instruments, is the prevailing theme of the course.
Pre / Co requisites: MAT 371 requires prerequisite of C or better in MAT162.

MAT 390. Seminar in Mathematics Education. 3 Credits.

This course is the capstone course for grades 4-8 certification students completing the 30credit mathematics certification option. Topics selected from mathematics, statistics, the history of mathematics, and mathematics education for their significance and interest. Field experience may be required.
Pre / Co requisites: MAT 390 requires prerequisite of Teacher Candidacy.
Repeatable for Credit.

MAT 400. History of Mathematics for Elementary Teachers. 3 Credits.
History and development of elementary mathematics from primitive times to the discovery of calculus. Problems of the period are considered.
Pre / Co requisites: MAT 400 requires prerequisites of MAT 312 and MAT 313.

MAT 401. History of Mathematics. 3 Credits.

This course will cover selected topics from the history of mathematics. Many great mathematicians will be studied including Hippocrates, Euclid,
Archimedes, Heron, Cardano, Newton, the Bernoulli Brothers, Euler, Gauss, and others. Mathematics problems will be approached using the methods and knowledge of the era studied., A solid background in undergraduate mathematics is required.
Pre / Co requisites: MAT 401 requires prerequisite of C or better in MAT 261.
Gen Ed Attribute: Speaking Emphasis, Writing Emphasis.

MAT 405. Special Topics in Mathematics. 3 Credits.

Topics announced at the time of offering.
Pre / Co requisites: MAT 405 requires a prerequisite of a C or
higher in MAT 162 or permission of instructor.
Repeatable for Credit.

MAT 411. Algebra I. 3 Credits.

Abstract algebra. Algebraic systems, groups, rings, integral domains, and fields. Pre / Co requisites: MAT 411 requires prerequisites of C or better MAT 200, MAT 261, and MAT 311.

MAT 412. Algebra II. 3 Credits.

Abstract algebra. Algebraic systems, groups, rings, integral domains, and fields.
Pre / Co requisites: MAT 412 requires prerequisite of C or better in MAT 411.

MAT 413. Computer Algebra. 3 Credits.

The focus of this course is to introduce students to computer algebra packages and review important topics in algebra, calculus and linear algebra.
Pre / Co requisites: MAT 413 requires prerequisites of MAT 162 and MAT 311 with a "C" or better.

MAT 414. Theory of Numbers. 3 Credits.

Properties of integers; primes, factorization, congruences, and quadratic reciprocity. Pre / Co requisites: MAT 414 requires prerequisites of C or better in MAT 200 and MAT 261.

MAT 415. Introduction to Cryptography. 3 Credits.

An introduction to the mathematics behind various aspects of modern cryptography, including matrix cryptosystems, quadratic ciphers such as the Rabin cipher, exponential ciphers such as the Diffie-Hellman Key Exchange, the RSA algorithm and DES encryption. Pre / Co requisites: MAT 415 requires prerequisites of MAT 161 and MAT 151 OR MAT 161 and MAT 200.

MAT 421. Mathematical Statistics I. 3 Credits.

Probability; discrete distributions; continuous distributions; mathematical expectation; moment generating functions; bivariate distributions; distributions of functions of random variables. Use of appropriate technology.
Pre / Co requisites: MAT 421 requires a prerequisite of C or better in MAT 261 or a corequisite of MAT 261.

MAT 422. Mathematical Statistics II. 3 Credits.

Order statistics; point estimation; interval estimation; tests of statistical hypotheses; statistics power; least squares regression. Use of appropriate technology.
Pre / Co requisites: MAT 422 requires prerequisite of C or better in MAT 421 and either MAT 121 or MAT 125.

MAT 423. Applied Probability. 3 Credits.

Standard Concepts and methods of stochastic modeling and applications of stochastic processes.
Pre / Co requisites: MAT 423 requires prerequisites of MAT 261, MAT 311, and MAT 421 with a "C" or better.

MAT 425. Numerical Analysis II. 3 Credits.

An examination of advanced topics in numerical analysis and scientific computing. Topics include: Approximation and interpolation of functions, numerical quadratures, matrix norms, iterative methods of numerical linear algebra, numerical solution of nonlinear systems of equations, and methods for the numerical solution of ordinary differential equations. Pre / Co requisites: MAT 425 requires a prerequisite of C or better in MAT 325.

MAT 427. Introduction to Optimization Techniques. 3 Credits.

Nature of optimization problems: deterministic and stochastic, and discrete and continuous. Computer methods of solution, systematic and random search, linear quadratic, dynamic programming, and others.
Pre / Co requisites: MAT 427 requires prerequisites of C or better in MAT 261 and C or better in MAT 311.

MAT 432. Topology. 3 Credits.

Elements of point set topology. Separation axioms. Connectedness, compactness, and metrizability.
Pre / Co requisites: MAT 432 requires prerequisites of C or better in MAT 200 and MAT 261.

MAT 433. Mathematical Modeling. 3 Credits.

The idea of a mathematical model of a real situation. Techniques and rationales of model building. Examples from the life, physical, and social sciences.
Pre / Co requisites: MAT 433 requires prerequisites of C or better in MAT 261 and C or better in MAT 343.

MAT 441. Real Analysis I. 3 Credits.

Introduces the real line, limits of sequences, Cauchy sequences, limits of real functions, continuous functions, intermediate value theorem, the derivative, mean value theorems and Riemann integral.
Pre / Co requisites: MAT 441 requires prerequisites of C or better in MAT 200 and MAT 261.

MAT 442. Real Analysis II. 3 Credits.

A continuation of MAT 441. Introduces infinite series, sequences and series of functions, Taylor's Theorem with applications and topics from integration theory.
Pre / Co requisites: MAT 442 requires prerequisite of C or better in MAT 441.

MAT 443. Applied Analysis I. 3 Credits.

The techniques of analysis applied to problems in the physical sciences. Topics include partial differential equations, orthogonal functions, complex integration, and conformal mapping. Pre / Co requisites: MAT 443 requires prerequisite of C or better MAT 261, MAT 311 and MAT 343..

MAT 444. Applied Analysis II. 3 Credits.

The techniques of analysis applied to problems in the physical sciences. Topics include partial differential equations, orthogonal functions, complex integration, and conformal mapping. Pre / Co requisites: MAT 444 requires prerequisite of C or better in MAT 443.

MAT 445. Complex Variables. 3 Credits.

Introduction to functions of a complex variable. Analytic functions, mappings, differentiation and integration, power series, and conformal mappings.
Pre / Co requisites: MAT 445 requires prerequisite of C or better in MAT 261.

MAT 455. Industrial Mathematics Practicum. 3 Credits.

This is a case study, team problem-solving based course focused on solving real-world problems that can be modeled using discrete or continuous mathematics techniques and which emanate from industry. Ideally, the problems would be obtained from partnerships with local industry. Until these relationships develop, extant problems or problems arising in WCU faculty research (in math, physics, biology, geology, finance, etc.) will be used.
Pre / Co requisites: MAT 455 requires prerequisites of STA 319, MAT 425, and MAT 413 and any one of MAT 493 or MAT 427.
Gen Ed Attribute: Speaking Emphasis, Writing Emphasis.
Cross listed courses MAT 455, MAT 555.

MAT 478. Fundamentals of Actuarial Science. 3 Credits.

Students completing this course will have a better understanding of actuarial models of life contingencies, more specifically, students will understand that life insurance payments, life annuity payments, pension payments, etc. are determined by financial random variables dependent on human life.
Pre / Co requisites: MAT 478 requires prerequisite of MAT 371 and MAT 421 with a "C" or better.

MAT 479. Financial Calculus. 3 Credits.

This course aims to provide the undergraduate mathematics major with an introduction to the mathematics behind derivative pricing and portfolio management. Pricing theory is first developed through the typical binomial model and then is extended to continuous time via the Black-Scholes model. In addition, the student will be exposed to how arbitrage can be used to aid in the pricing more complicated derivatives, such as call options on dividendpaying securities and exotic options.
Pre / Co requisites: MAT 479 requires prerequisite of MAT 371 and MAT 421 with a "C" or better.

MAT 480. Capstone in Mathematics. 3 Credits.

This capstone experience surveys important concepts from the pure mathematics curriculum and prepares students to investigate problems that reach beyond the standard course material. The course emphasizes techniques of mathematical writing and speaking on topics selected from calculus, linear algebra, real and complex analysis, abstract algebra, and topology.
Pre / Co requisites: MAT 480 requires a prerequisite of C or higher in MAT 200, MAT 261, MAT 311, and at least one 400-level mathematics course.
Gen Ed Attribute: Speaking Emphasis, Writing Emphasis.

MAT 491. Internship in Applied Mathematics. 2-4 Credits.

In cooperation with regional businesses and industrial companies, student will perform an internship in applied mathematics.
Repeatable for Credit.

MAT 499. Independent Study in Mathematics. 1-3 Credits.

Independent investigation of an area of mathematics not covered in the department's course offerings.
Consent: Permission of the Department required to add.
Repeatable for Credit.

MTE

MTE 340. Using Technology Teaching Elementary Mathematics. 3 Credits.

Using computer software, calculators, and the Internet as aids in teaching elementary school mathematics.
Pre / Co requisites: MTE 340 requires prerequisites of MAT 101 and MAT 102.

STA 200. Introduction to Statistics II. 3 Credits.
Continuation of MAT 121/MAT 125. Topics include inference about the means, standard deviations and proportions, goodness of fit, analysis of variance, regression analysis, correlation, and nonparametric tests. In addition, students will learn to use SPSS, a statistical analysis software that is available for free through the Ram Cloud. Finally, students will hone their technical writing skills by summarizing their statistical analyses with written reports.
Pre / Co requisites: STA 200 requires a prerequisite of a grade of C- or better in MAT 121, MAT 125 or ECO 251. Distance education offering may be available.

STA 201. Statistical Methods for Political Polling. 3 Credits.

The purpose of this course is to introduce students to the statistical methodology used in the analysis of data from a political survey. Topics will include sampling techniques, hypothesis testing, sample size calculation, categorical data analysis, simple linear regression, and ANOVA. There will be a field trip to the Center for Opinion Research at Franklin and Marshall College at the beginning of the semester.
Pre / Co requisites: STA 201 requires prerequisites of MAT 121 or PSC 200.

STA 202. Sports Analytics. 3 Credits.

In this course we will apply concepts such as regression, classification, clustering, decision trees and others to evaluate players and teams from baseball, basketball, football, hockey and soccer. We will also introduce the statistical programming language R in order to analyze recent (and large!) data sets.
Pre / Co requisites: STA 202 requires a prerequisite of a C- or higher in MAT 121 or MAT 125, or ECO 251.

STA 203. Probability and Statistics in Gaming. 3 Credits.

In this class students will learn the important role that probability and statistics play in the enjoyment and development of games ranging from blackjack and the lottery to Battleship and World of Warcraft. Statistical topics include descriptive statistics, probability, discrete random variables, and multivariate linear modeling. Throughout the course students will use statistical tools to not only develop optimal strategies while gaming but also to analyze the current trends in contemporary gaming, determine which factors correlate with a game's popularity, and how to develop algorithms for computer opponents.
Pre / Co requisites: STA 203 requires a prerequisite of MAT 121 or MAT 125.

STA 311. Intro Statistical Computing and Data Management. 3 Credits.

Course will give students the ability to manage and manipulate data effectively, conduct basic statistical analysis, and generate reports and graphics primarily using the SAS Statistical Software Program.
Pre / Co requisites: STA 311 requires a prerequisite of MAT 121 or MAT 125.
Distance education offering may be available.
STA 319. Applied Statistics. 3 Credits.
This course will cover simple and multiple linear regression methods and linear time series analysis with an emphasis on fitting suitable models to data and testing and evaluating models against data.
Pre / Co requisites: STA 319 requires a prerequisite of C or better in (MAT 121 or MAT 125) and (MAT 143 or MAT 145 or MAT 161).

STA 320. Experimental Design. 3 Credits.

The purpose of this course is to guide students in learning how to design, conduct and analyze the results of scientific studies so that valid and objective inferences about the population are obtained. It will cover ANOVAs, block, factorial, and split plot designs, as well as response surface analysis.
Pre / Co requisites: STA 320 requires a prerequisite of C or better in MAT 121 or MAT 125.

STA 321. Topics in Advanced Statistics. 3 Credits.

Course will cover select topics in categorical analysis, nonparametrics and time series analysis. Emphasis will be placed on statistical programming, particularly simulations. Pre / Co requisites: STA 321 requires prerequisites of C or better in STA 311, STA 319, STA 320, and MAT 421.

STA419. Basics of Statistical Learning. 3 Credits.

This course will provide an introduction to statistical learning and predictive modeling. Tools will be developed for visualizing and understanding complex data sets. All data analysis will be done using the statistical programming language R .
Pre / Co requisites: STA 419 requires a prerequisite of a C or better in STA 319.
Distance education offering may be available.

STA 490. Capstone Course in Statistics. 3 Credits.

Course will synthesize lessons learned throughout the students career with the goal of preparing students for work as professional statisticians. Topics will include report writing, presentations, statistical consulting, sampling design, and resume writing.
Pre / Co requisites: STA 490 requires prerequisites of ENG 368 or ENG 375 or ENG 371 and a C or better in STA 320 and STA 321.

Faculty and Staff

25 University Avenue (UNA)

Department Chair

$\begin{array}{lr}\begin{array}{l}\text { Kolpas, Allison, Ph.D., University of California, Santa Barbara } \\ \text { Mathematical Biology }\end{array} & \begin{array}{r}\text { UNA 101A } \\ \text { akolpas@wcupa.edu }\end{array} \\ \begin{array}{l}\text { Assistant Department Chair } \\ \text { Fisher, Michael, Ph.D., Lehigh University } \\ \text { Graph Theory \& Combinatorics }\end{array} & \text { UNA 106 610-436-2498 } \\ \text { Administrative Assistant } & \text { mfisher@wcupa.edu } \\ \text { Sally Malarney } & \text { UNA 101 610-436-2440 } \\ & \text { smalarney@wcupa.edu }\end{array}$

Tenured \& Tenure-Track Faculty

Bowen, Brian, Ph.D., University of Delaware UNA 179 610-436-2351

Brazas, Jeremy, Ph.D., University of New Hampshire Algebraic \& General Topology

Crossett, Andrew, Ph.D., Carnegie Mellon University Applied Statistics

Fisher, Michael, Ph.D., Lehigh University
Graph Theory \& Combinatorics
Gallitano, Gail, Ed. D., Columbia University Mathematics Education

Gallop, Robert, Ph.D., Drexel University
Applied Statistics, Biostatistics

Glidden, Peter, Ph.D., Columbia University
Mathematics Education
Gupta, Shiv, Ph.D., Case Western Reserve University
Algebra (Group Theory, Number Theory)
Johnson, Kim, Ph.D., Penn State University
Mathematics Education
Johnston, Clifford, Ph.D., Temple University
Partial Differential Equations, Stochastic Processes
Junius, Premalatha, Ph.D., University of Northern Colorado
Applied Mathematics
UNA 111 610-436-2054 jbrazas@wcupa.edu

UNA172 610-436-2613 acrossett@wcupa.edu

UNA 123 610-430-4196 mfisher@wcupa.edu

UNA 114 610-436-2452 ggallitano@wcupa.edu

UNA 180 610-436-2419 rgallop@wcupa.edu

UNA 123 610-436-2590 pglidden@wcupa.edu

UNA 112 610-436-3459 sgupta@wcupa.edu

UNA 122 610-436-3249
kjohnson2@wcupa.eduI
UNA 173 610-738-0432 cjohnston@wcupa.edu

UNA 117 610-436-2199
pjunius@wcupa.edu

Li, Chuan, Ph.D., University of Tennessee Applied Mathematics	UNA 115 610-436-1081 cli@wcupa.edu
Marano, Lisa, Ph.D., Lehigh University Stochastic Processes \& Financial Mathematics	UNA 118 610-436-0585 lmarano@wcupa.edu
McClintock, Scott, Ph.D., University of Kentucky Statistics	UNA 121 610-436-4963 smcclintock@wcupa.edu
McKibben, Mark, Ph.D., Ohio University Differential Equations, Stochastic Analysis	UNA 173A 610-436-2148 mmckibben@wcupa.edu
McLaughlin, James, Ph.D., University of Illinois Number Theory, Special Functions	UNA 108 610-436-4417 jmclaughlin@wcupa.edu
Miller, Emily, Ph.D., University of Delaware Mathematics Education	UNA 115 610-436-2436 emiller@wcupa.edu
Parsell, Scott, Ph.D., University of Michigan Analytic Number Theory	UNA 175 610-436-3465 sparsell@wcupa.edu
Peng, Cheng, Ph.D., University of Toledo Statistics	UNA 107 610-436-2369 cpeng@wcupa.edu
Perkoski, Andre, M.S., West Chester University Mathematics	UNA 110 610-436-3495 aperkoski@wcupa.edu
Pyott, Laura Connell, M.S., University of Delaware Statistics	UNA 107 610-436-3451 lpyott@wcupa.edu
Rieger, Randall, Ph.D., University of North Carolina Applied Statistics, Biostatistics	UNA 116 610-436-2893 rrieger@wcupa.edu
Sullivan, Rosemary, Ph.D., Lehigh University Geometric Probability Theory	UNA 128 610-430-4418 rsullivan@wcupa.edu
Swartz, Barbara, Ph.D., University of Virginia Mathematics Education	UNA 110 610-436-3250 bswartz@wcupa.edu
Tan, Lin, Ph.D., University of California (Los Angeles) Algebra (Algebraic Groups, Combinatorics)	UNA 113 610-436-3455 ltan@wcupa.edu
Xu, Justin, Ph.D., University of Connecticut Actuarial Science	UNA 111 610-436-1078 јхи@wcupa.edu
Zimmer, Peter, Ph.D., University of Kansas Partial Differential Equations, Stochastic Processes	UNA 178 610-436-2696 pzimmer@wcupa.edu

[^0]: The picture on the cover is of an "aperiodic monotile."
 This newfound mathematical 'Einstein' Shape that creates a never-repeating pattern has taken the math world by storm. The craggy, hat-shaped tile can cover an infinite plane with patterns that never repeat.

[^1]: ${ }^{1}$ The table that lists courses by area (e.g., algebra, analysis, applied mathematics) is given on page 39 .

[^2]: *Mathematics MAT electives to be chosen above 311 but not MAT 350, MAT 351, MAT 352,

