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Objectives: Diffusion magnetic resonance 

health and disease. Track-weighted techniques are a promising means of evaluating these images for white matter pathology,

particularly when the burden of disease is

accuracy of track-weighted techniques has not been tested in a ground truth environment.

Materials and Methods: We constructed ground truth datasets with simulated lesio

corticospinal tract or the cingulum. The location of lesions within an affected tract varied for each individual. We also imp

a track-weighted metric designed to detect spatially heterogeneous white matter a

Anisotropy Fiber Integration" (FAFI). Using our ground truth datasets, voxelwise analysis of fractional anisotropy (FA) maps

compared to voxelwise analysis of FAFI maps.

Results: We report that voxelwise analysis of FAFI maps resulted in a successful depiction of simulated lesions of both the

corticospinal tract and the cingulum.  Unlike many voxelwise approaches, abnormal tracts were revealed in near

detail. Unlike directed tractography, this analysis did not require

were no falsely discovered white matter abnormalities. In contrast, voxelwise analysis of FA maps failed to demonstrate the

simulated lesions. Tract-based spatial statistics of FA maps likewise did not demonstrate the simulated lesions.

Conclusion: Track-weighted techniques such as FAFI may be useful in the evaluation of diseases that are believed to manifest with

spatially heterogeneous white matter abnormalities.

Keywords: Diffusion imaging, Tractography, White matter

INTRODUCTION

Diffusion magnetic resonance imaging uses the signal of

water diffusion to probe the organization of white matter in

vivo [1-3]. Microstructural elements in white matter present

barriers to the movement of water, and their organizational

integrity can be assessed by measuring the dire

preference (anisotropy) of water diffusion. When modeling

diffusion as a tensor, regions of the brain with potential

white matter disruption commonly demonstrate

abnormalities in fractional anisotropy (FA) or other diffusion

metrics. 
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ABSTRACT 
: Diffusion magnetic resonance imaging can provide a unique perspective into the structural properties of white matter in

weighted techniques are a promising means of evaluating these images for white matter pathology,

particularly when the burden of disease is distributed heterogeneously across white matter tracts. However, to our knowledge the

weighted techniques has not been tested in a ground truth environment. 

: We constructed ground truth datasets with simulated lesions that consistently involved either the

corticospinal tract or the cingulum. The location of lesions within an affected tract varied for each individual. We also imp

weighted metric designed to detect spatially heterogeneous white matter alterations in a variety of settings, "Fractional

Anisotropy Fiber Integration" (FAFI). Using our ground truth datasets, voxelwise analysis of fractional anisotropy (FA) maps

compared to voxelwise analysis of FAFI maps. 

analysis of FAFI maps resulted in a successful depiction of simulated lesions of both the

corticospinal tract and the cingulum. Unlike many voxelwise approaches, abnormal tracts were revealed in near

is analysis did not require a priori hypotheses regarding lesion location. Furthermore, there

were no falsely discovered white matter abnormalities. In contrast, voxelwise analysis of FA maps failed to demonstrate the

statistics of FA maps likewise did not demonstrate the simulated lesions.

weighted techniques such as FAFI may be useful in the evaluation of diseases that are believed to manifest with

spatially heterogeneous white matter abnormalities. 

: Diffusion imaging, Tractography, White matter 

imaging uses the signal of 

water diffusion to probe the organization of white matter in 

. Microstructural elements in white matter present 

barriers to the movement of water, and their organizational 

integrity can be assessed by measuring the directional 

preference (anisotropy) of water diffusion. When modeling 

diffusion as a tensor, regions of the brain with potential 

white matter disruption commonly demonstrate 

abnormalities in fractional anisotropy (FA) or other diffusion 
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imaging can provide a unique perspective into the structural properties of white matter in 

weighted techniques are a promising means of evaluating these images for white matter pathology, 

distributed heterogeneously across white matter tracts. However, to our knowledge the 

ns that consistently involved either the 

corticospinal tract or the cingulum. The location of lesions within an affected tract varied for each individual. We also implemented 

lterations in a variety of settings, "Fractional 

Anisotropy Fiber Integration" (FAFI). Using our ground truth datasets, voxelwise analysis of fractional anisotropy (FA) maps was 

analysis of FAFI maps resulted in a successful depiction of simulated lesions of both the 

corticospinal tract and the cingulum. Unlike many voxelwise approaches, abnormal tracts were revealed in near-tractographic 

hypotheses regarding lesion location. Furthermore, there 

were no falsely discovered white matter abnormalities. In contrast, voxelwise analysis of FA maps failed to demonstrate the 

statistics of FA maps likewise did not demonstrate the simulated lesions. 
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Group comparisons of diffusion metrics generally rely on 

voxel-to-voxel or region-to-region comparisons of diffusion 

metrics. However, white matter tracts almost always span 

multiple voxels and often span multiple regions. Thus, a 

diseased tract could escape detection if there were sufficient 

individual variation in the location of affected voxels or 

regions. A new class of track-weighted metrics, proposed by 

Correia et al. [4] and further developed by several groups, 

could improve sensitivity for heterogeneously distributed 

tract pathology. These metrics include "track density 

imaging" (TDI) [5-7], “average path length map” (APM) 

[8,9], and others. They are based on whole-brain 

tractography, which depicts the connectivity of every white 

matter voxel to every other voxel. In a TDI map, the value of 

a voxel is based on the number of streamlines passing 

through it. In an APM map, the value of a voxel is based on 

the length of its streamlines to other voxels.  Using these 

techniques, voxels may demonstrate abnormal values not 

only if they are affected by disease, but also if they are 

connected to a voxel affected by disease.  

Abnormalities in either TDI values or APM values indicate 

that abnormal fiber track termination may have occurred 

during whole-brain tractography. Fiber track termination 

occurs when a threshold is exceeded, for example when a 

fiber track enters a region of low FA or makes a sharp turn 

[3]. Although low FA is normally found in cortex, it is also 

found in diseased white matter [2,3]. Thus, fiber track 

termination events are more frequent in disease states. 

Track-weighted maps may provide more sensitive depictions 

of abnormal white matter than conventional diffusion 

metrics, such as FA maps. But to our knowledge, track-

weighted maps have not previously been compared to FA 

maps or other metrics in a ground-truth environment, with 

full knowledge of the location of affected white matter. We 

have constructed a synthetic system that simulates widely 

scattered lesions to two white matter tracts, the corticospinal 

tract and the cingulum. We have also implemented a track-

weighted metric, "Fractional Anisotropy Fiber Integration" 

(FAFI), that is sensitive to white matter changes even if they 

do not result in fiber track termination. In a FAFI map, each 

voxel is used as a seed for a tractography streamline. The 

FAFI value of the voxel is defined as the path integral of FA 

over that tractography streamline (S), as follows: 

Like other diffusion metrics, FAFI maps can be compared 

directly using whole-brain techniques without need for a 

priori hypotheses regarding the location of an abnormality. 

In patients with traumatic brain injury, FAFI can 

demonstrate relationships to clinical outcomes that are not 

evident when examining FA maps [10]. In this paper, we 

examine the hypothesis that whole-brain analysis of FAFI 

maps can identify simulated white matter lesions more 

readily than a similar analysis of FA maps. 

METHODS 

All study protocols were approved by the local institutional 

review board. Informed consent was not obtained because 

the data were analyzed anonymously from a public database. 

The study sample was composed of 40 healthy volunteers 

(19 male, 21 female, age 22 to 35 years). All diffusion 

images were provided by the Human Connectome Project 

[11]. Isotropic diffusion images were acquired on a 3T 

scanner (Siemens Skyra) with the following sequence 

parameters: repetition time = 5520 msec, echo time = 89.5 

msec, flip angle = 78, field of view = 210 x 180 cm, matrix 

= 168 x 144, slice thickness = 1.25. Three diffusion 

weighting shells were used with b = 1000, 2000, and 3000 

s/mm2, each with approximately 90 diffusion weighting 

directions and six b = 0 acquisitions [12-15]. 

Maps of FA and the principal eigenvector were produced 

using all three b values in FSL [16,17]. The unaltered FA 

maps were used as controls. Tractography of the left 

corticospinal tract and left cingulum was performed for each 

subject using the FACT algorithm [18]. From the 

tractography results, simulated lesions in each tract were 

generated. Each control individual had two synthetic 

counterparts: one with a simulated lesion in the left 

corticospinal tract and one with a simulated lesion in the left 

cingulum. For each voxel within the simulated lesions, the 

FA values and principal eigenvector were replaced by the 

corresponding values from a different voxel chosen 

randomly from within the brain. This method was designed 

to produce spatial and inter individual variation in lesion 

appearance, mimicking natural variation in pathophysiology. 

Simulated lesions in each tract were produced within a 

single cross-sectional slice of the tract. The remainder of the 

tract was not altered. In order to minimize lesion overlap 

between individuals, no two simulated lesions were placed 

on the same slice (based on the scanner reference frame). 

For the corticospinal tract, which lies approximately along 

the craniocaudal axis, simulated lesions were "cut" along 

different axial planes. For the cingulum, which lies 

approximately along the anteroposterior axis, simulated 

lesions were "cut" along different coronal planes. Apart from 

the presence of simulated lesions, the synthetic groups were 

identical to the original control group. Right-sided tracts 

were not manipulated, serving as internal controls. 

FAFI maps were produced from the control dataset and both 

synthetic datasets using an in-house MATLAB 

(MathWorks) script, which takes only the FA maps and 

principal eigenvector maps as input. To determine the FAFI 

value of a voxel, its center was used as the origin of a 

bidirectional streamline using the Fiber Assignment by 

Continuous Tractography algorithm [18]. Streamlines were 
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terminated in regions with FA less than 0.18, after an

angular deviation greater than 45 degrees, or after revisiting

a voxel. The FAFI value was estimated as the sum of FA

values along the streamline, sampled at 1 mm intervals. The

process was repeated for every voxel, taking approxima

40 minutes of computing time per brain volume on a

personal computer. The resolution of FAFI maps and FA

maps were identical. Whole-brain tractography used in

producing FAFI maps was performed independently of

directed tractography used to produce sim

FA and FAFI maps were brain extracted and aligned into a

common space using a nonlinear registration tool [19

Images were masked to white matter, defined as FA > 0.3.

Voxelwise comparisons of the control group to the simulated

lesion groups was carried out using a permutation analysis

(5000 permutations) at a two-tailed significance threshold of

p<0.05.  

Figure 1. Coronal FA maps (top) and FAFI maps

Because they reflect macrostructure as well as microstructure, FAFI maps tended to produce greater contrast for highly

connected white matter. 

Control images with unaltered white matter (left) were compared to the

corticospinal tract (right). The location of the simulated lesion is indicated with a small yellow arrow. The simulated lesio

caused visible asymmetric decreases in FAFI values throughout the corticospinal tr

values (large yellow arrows). 
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ess than 0.18, after an 

angular deviation greater than 45 degrees, or after revisiting 

a voxel. The FAFI value was estimated as the sum of FA 

values along the streamline, sampled at 1 mm intervals. The 

process was repeated for every voxel, taking approximately 

40 minutes of computing time per brain volume on a 

personal computer. The resolution of FAFI maps and FA 

brain tractography used in 

producing FAFI maps was performed independently of 

directed tractography used to produce simulated lesions.  

FA and FAFI maps were brain extracted and aligned into a 

common space using a nonlinear registration tool [19-21]. 

Images were masked to white matter, defined as FA > 0.3. 

Voxelwise comparisons of the control group to the simulated 

groups was carried out using a permutation analysis 

tailed significance threshold of 

For FA maps only, statistical analysis was repeated using

TBSS (Tract-Based Spatial Statistics, [22]), part of FSL

[17]. This included additional preprocessing steps in which

the mean FA map was generated and thinned to create a

mean FA skeleton that represented the centers of all tracts

common to the group. Each subject's aligned FA data was

then projected onto this skeleton and masked

before undergoing permutation analysis as above.

RESULTS 

Simulated lesions were fairly small, with mean lesion

volume of 147 mm
3 

± 27 mm

lesion group and mean lesion volume of 53 mm

in the simulated cingulum lesion group. As expected, FAFI

maps depicted visible changes in lesion voxels as well as in

voxels with normal FA that were in the affected white matter

tract (Figure 1). 

Coronal FA maps (top) and FAFI maps (bottom) from one representative subject. 

Because they reflect macrostructure as well as microstructure, FAFI maps tended to produce greater contrast for highly

Control images with unaltered white matter (left) were compared to their counterparts with

corticospinal tract (right). The location of the simulated lesion is indicated with a small yellow arrow. The simulated lesio

visible asymmetric decreases in FAFI values throughout the corticospinal tract, even in white matter with normal FA

78

Nucifora P GP, Ware J B, Gawrysiak M J, Whipple E, Wolf R L, et al. 

For FA maps only, statistical analysis was repeated using 

Based Spatial Statistics, [22]), part of FSL 

d additional preprocessing steps in which 

the mean FA map was generated and thinned to create a 

mean FA skeleton that represented the centers of all tracts 

common to the group. Each subject's aligned FA data was 

then projected onto this skeleton and masked to the skeleton 

before undergoing permutation analysis as above. 

Simulated lesions were fairly small, with mean lesion 

± 27 mm
3

in the simulated corticospinal 

lesion group and mean lesion volume of 53 mm
3 

± 12 mm
3
 

d cingulum lesion group. As expected, FAFI 

maps depicted visible changes in lesion voxels as well as in 

voxels with normal FA that were in the affected white matter 

Because they reflect macrostructure as well as microstructure, FAFI maps tended to produce greater contrast for highly-

ir counterparts with a simulated lesion in the 

corticospinal tract (right). The location of the simulated lesion is indicated with a small yellow arrow. The simulated lesion 

act, even in white matter with normal FA 
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Voxelwise comparison of the control group to the simulated

corticospinal lesion group demonstrated significantly

decreased FAFI values in nearly every voxel of the

body of the corticospinal tract (Figure 2

voxelwise comparison of the control group to the simulated

cingulum lesion group demonstrated significantly decreased

Figure 2. Voxelwise comparison of control group to simulated corticospinal lesion group.

(A) Decreased FAFI values were present throughout the expected location of the left corticospinal tract,depicted

overlay (p<0.05, red) on axial FA maps. (B) The left

rendering of voxels with decreased FAFI values (p<0.05, depicted in red), without the need for additional user

tractography. 

No significant differences in FA values were observed using voxelwise comparisons with or without TBSS (p<0.05).
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Voxelwise comparison of the control group to the simulated 

corticospinal lesion group demonstrated significantly 

decreased FAFI values in nearly every voxel of the main 

Figure 2). Similarly, 

voxelwise comparison of the control group to the simulated 

cingulum lesion group demonstrated significantly decreased 

FAFI values in nearly every voxel of the main body of the

cingulum (Figure 3). When voxels with abnormal FAFI

values were rendered in three dimensions, the affected tract

was revealed in sufficient detail to identify it based on its

gross anatomy. There was no need for post

tractography. 

ise comparison of control group to simulated corticospinal lesion group. 

(A) Decreased FAFI values were present throughout the expected location of the left corticospinal tract,depicted

overlay (p<0.05, red) on axial FA maps. (B) The left corticospinal tract was clearly identified

rendering of voxels with decreased FAFI values (p<0.05, depicted in red), without the need for additional user

FA values were observed using voxelwise comparisons with or without TBSS (p<0.05).
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FAFI values in nearly every voxel of the main body of the 

When voxels with abnormal FAFI 

values were rendered in three dimensions, the affected tract 

was revealed in sufficient detail to identify it based on its 

gross anatomy. There was no need for post-hoc 

(A) Decreased FAFI values were present throughout the expected location of the left corticospinal tract,depicted as an 

corticospinal tract was clearly identified after frontal and lateral 3D 

rendering of voxels with decreased FAFI values (p<0.05, depicted in red), without the need for additional user-directed 

FA values were observed using voxelwise comparisons with or without TBSS (p<0.05).
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Figure 3. Voxelwise comparison of control group to simulated cingulum lesion group.

(A) Decreased FAFI values were present throughout the expected location of the left ci

(p<0.05, red) on axial FA maps. (B) The left cingulum

with decreased FAFI values (p<0.05, depicted in red), without the need for additional user

No significant differences in FA values were observed using voxelwise comparisons with or without TBSS (p<0.05).
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Voxelwise comparison of control group to simulated cingulum lesion group. 

(A) Decreased FAFI values were present throughout the expected location of the left cingulum, depicted as an overlay

(p<0.05, red) on axial FA maps. (B) The left cingulum was clearly identified after frontal and lateral 3D rendering of voxels

with decreased FAFI values (p<0.05, depicted in red), without the need for additional user-directed

No significant differences in FA values were observed using voxelwise comparisons with or without TBSS (p<0.05).
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ngulum, depicted as an overlay 

was clearly identified after frontal and lateral 3D rendering of voxels 

directed tractography. 

No significant differences in FA values were observed using voxelwise comparisons with or without TBSS (p<0.05). 
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In both simulated lesion groups, no voxels demonstrated 

increased FAFI values. Decreased FAFI values were found 

exclusively in the left cerebral hemisphere (i.e. there were no 

falsely discovered voxels in the right hemisphere).  

A parallel analysis using only FA maps found no voxels 

with significant FA differences between the control group 

and either of the simulated lesion groups. When the FA-only 

analysis was repeated using tract-based spatial statistics, we 

again found no voxels with significant FA differences 

between the control group and either of the simulated lesion 

groups. 

DISCUSSION 

Several diseases, including traumatic brain injury [23-25] 

and multiple sclerosis [26], manifest with an unpredictable 

multifocal pattern of abnormal white matter. In other 

diseases, such as schizophrenia [27], there is evidence of 

white matter involvement without a consensus on which 

white matter tracts, if any, are specifically involved. The 

simulated lesions described here are intended as a general 

model of diseases which consistently involve specific white 

matter tracts but do not consistently involve the same 

location of the tracts.  We report the successful 

implementation of a method to detect spatially 

heterogeneous white matter alterations, and we demonstrate 

its advantages compared to a similar analysis of FA maps.  

Directed tractography and other techniques have also been 

used to probe specific white matter tracts in health and 

diseases [16, 28-31].  However, directed tractography can be 

performed only when there are one or more tracts that are 

suspected to be abnormal. In contrast to directed 

tractography, FAFI maps can identify abnormal tracts even 

without a priori suspicion. In this study, alterations in the 

corticospinal tract and cingulum were identified based solely 

on an unbiased whole-brain analysis.  

FAFI maps may be especially useful in disease states 

involving white matter tracts that are anatomically novel or 

grossly distorted. Furthermore, FAFI and FA maps maybe 

used in a complementary manner when investigating a 

disease population. When FA comparisons are similar to 

FAFI comparisons, lesions most likely occur in consistent 

locations across the population. When there is mismatch, 

lesions most likely occur in different locations for each 

individual. For this reason, population-based standard atlases 

may prove as helpful for FAFI as they are for FA. 

The method used to produce simulated lesions in this paper, 

which does not directly mimic any disease process, naturally 

limits its applicability to clinical settings. Although this 

method is arbitrary, we have found that similar results can be 

obtained by simply reducing FA [32]. In addition, only one 

tract was manipulated in each individual in order to highlight 

the ease of identifying the affected tracts. In a clinical 

setting, FAFI may demonstrate abnormalities in multiple 

white matter tracts [10]. Consequently, identifying 

individual tracts via post-hoc inspection of FAFI results 

might be more challenging. Even in this case, we expect 

FAFI to offer advantages over FA analysis. One would still 

not require a priori knowledge of the affected white matter, 

nor would detection depend on consistency in lesion location 

within a tract. 

A limitation common to FAFI and other track-weighted 

maps is the lack of a clear histological correlate for 

abnormal values. A voxel with decreased FA values is 

generally considered to reflect a focal microstructural 

abnormality of the underlying white matter [33]. A voxel 

with decreased FAFI values may likewise reflect a focal 

microstructural abnormality, but other explanations include 

reorientation or disorganization of white matter some 

distance away. FAFI values are sensitive to microstructural 

as well as macrostructural abnormalities, and therefore FAFI 

maps are a less specific indicator of pathology. 

As with any technique that makes use of tractography, it 

should be noted that streamlines produced by fiber tracking 

are only a mathematical model of diffusion, which is not 

necessarily equivalent to physical white matter fibers [34]. 

Particularly when using derivatives of diffusion metrics such 

as FAFI, it is possible that abnormal values reflect 

pathophysiology in water movement that is unrelated to 

white matter injury. Furthermore, any method based on 

tractography may be more sensitive to tracking errors 

(particularly in regions of crossing and/or “kissing” fibers) 

than one based solely on FA. Other models (e.g. 

probabilistic tractography) may be more robust to tracking 

errors [35], but they are not easily applied to FAFI because 

probability estimates do not readily translate into fiber 

trajectories along which one can integrate FA. 

In summary, we have presented a model for white matter 

injury that acknowledges potential spatial heterogeneity, 

illustrated with a ground-truth example of simulated lesions. 

We have introduced FAFI, a method to detect this sort of 

injury, and applied it to simulated lesions. Finally, we have 

explored the output of our FAFI analysis and compared it to 

the output of FA analysis. We believe that this method may 

be useful in the assessment of neuropathology, particularly 

when no well-defined locus is apparent with other DTI 

metrics. 
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